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I’m not interested in having an orchestra sound like itself. I want it to
sound like the composer.
- Leonard Bernstein

ii



Abstract

uOrchestrate is an integral system used by uDeploy (Uber’s internal interface to
their shared compute platform) responsible for Web Service Orchestration according
to user-defined strategies (Workflows) inside Uber’s infrastructure. Workflows are
described using Workflow Language v1.0 (WL1), an internally developed Domain-
Specific Language (DSL). With the increasing complexity of orchestration and
Workflows within Uber, uOrchestrate suffers from lack of usability due to design
choices based on an idea of less complexity. Therefore, I propose Workflow Lan-
guage v2.0 (WL2), a WL1-interoperable DSL that tries to solve WL1’s issues by
replacing the existing syntax with an internal DSL written in Python with the goal
of better usability. An evaluation of WL2 shows that it indeed does improve on the
established issues of WL1.

iii



Acknowledgements

The work presented in this thesis was done in Uber Technologies Inc., particularly
at the Aarhus office, a remote engineering office focused on scaling Uber’s core
infrastructure[18]. This thesis focuses on a Domain-Specific Language (DSL) used
by uOrchestrate, an integral system in Uber’s infrastructure. uOrchestrate was orig-
inally designed and implemented by Claus Thrane, Mathias Schwarz and Kristian
Lassen.

I would like to thank my thesis advisor Henrik Bærbak Christensen, both for
keeping me on the right track and providing great advice, but also for being one
of the factors that made this collaboration a reality. I would also like to thank
Claus Thrane for his great mentorship, not only in regards to my work at Uber
Technologies Inc., but also in regards to this thesis. Another thanks goes out to
Mathias Schwarz and Sebastian Kallestrup Bogner for proofreading the thesis and
providing great feedback, and to Mathias Bak Bertelsen for helping out in the 11th
hour.

This thesis wouldn’t have been possible without the help of Steffen Grarup and
Gustav Wibling, who, along with Claus, put faith in the work and paved the way
for this collaboration, so a huge thanks to you and to the rest of the Uber Aarhus
office.

Finally, I would like to thank my girlfriend, Nina, for her endless love and support
the last 5 months.

Emil Platz,
Aarhus, January 15, 2018.

iv



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Growing a Technological Infrastructure . . . . . . . . . . . . . . . . . 1

1.1.1 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Reliable Microservice Deployment . . . . . . . . . . . . . . . . . . . 4

1.2.1 uDeploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Web Service Orchestration . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 uOrchestrate . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Workflow Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Workflow Language Compiler . . . . . . . . . . . . . . . . . . 9
1.4.3 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . 10
1.4.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.5 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.6 Namespaces and Bundles . . . . . . . . . . . . . . . . . . . . 11
1.4.7 Example: Incremental Deployment . . . . . . . . . . . . . . . 11
1.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related work 20
2.1 Amazon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Simple Workflow Service . . . . . . . . . . . . . . . . . . . . . 20
2.2 Netflix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Spinnaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Workflow Language: from v1.0 to v2.0 24
3.1 Workflow Language v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Issues with Workflow Language v1.0 . . . . . . . . . . . . . . 24
3.2 Workflow Language v2.0 . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Fundamental Changes . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Internal vs External DSL . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Language Choice . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Prototype Study . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



4 Implementation 35
4.1 Model Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Language Constructs in Python . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Callable Objects . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Decorators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Context Managers . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Serializable Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Uncollectible data . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Named Assignments . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.4 Deserialization . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Testing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7.1 expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Evaluation 53
5.1 Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Introduction to Language . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Unsolicited Feedback . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Compared to hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 60
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendices 64

A Using WL2 65

B WL1 Documentation 66

C WL2 Documentation 72

vi



Chapter 1

Introduction

In this thesis, we’ll be studying a DSL used by several of Uber’s infrastructure
services to coordinate web services, with the intention of proposing a substantial
redesign to address a number of short-comings. Before we dive into the details, let’s
try to understand the context of Uber’s architecture and one of the main systems
consuming this DSL, the internal deployment system uDeploy.

Uber is one of the original Unicorns (a startup company valued at over $1
billion). It is a technology company, that provides transportation services, through
state-of-the-art technology. Uber has grown at incredible rates, and while this is
generally a good thing, it can be extremely hard to keep up with explosive growth
- especially since Uber’s core products are all about being stable and available
at all times. If the infrastructure can’t handle the growth, it affects stability and
availability, which will in turn affects growth. Limit growth to relieve infrastructure
is obviously not ideal. The following will take a look at the background of Uber’s
size, the problems that arises with it and the systems Uber uses to solve these
problems.

1.1 Growing a Technological Infrastructure
Originally, Uber had a Monolithic Architecture (a relatively centralized system[25,
p. 2]) with a single PostgreSQL instance handling all their data[23]. It kept up
with business, but as Uber grew and the traffic with it, this monolith became a lim-
itation. The main application, although centralized code-wise, could be distributed
out onto many application servers, but it was a single point of failure code-wise,
since introducing an error would affect all instances, hurting availability[25, p. 322].
The PostgreSQL instance, on the other hand, ran on a single machine[23], making
it a big concern hardware-wise, since it physically was running out of space to
put in more storage. It stored all the trip data, and since number of daily trips
doubled often, it was going to run out of disk space at some point. It was also
having a hard time keeping up with the number of requests from an IO perspective
(reads/writes). Another issue came from introducing new functionality to the lone
repository. Adding new features, fixing bugs or resolving technical debt started
requiring tribal knowledge, since the codebase had become too complex. Also, in
order to make changes take effect (no matter the size or importance), a complete
redeployment of the codebase was required.

Maintaining and operating a company’s technological infrastracture under rapid
growth is a notoriously hard situation to manage, only seen previously at a few
companies (such as Google and Facebook), that have since become industry leaders.
It does however also open up for the possibility of Uber joining the ranks of these
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industry leaders, should they play their cards right. In order to get there, Uber
needs a stable platform. Scalability, reliability, availability and extensibility are four
important concepts in Distributed Systems theory[25], that are all needed in order
to have a stable distributed system. Here’s a quick walkthrough of the requirements
to give an overview and set the stage for why they are hard to get right (especially
with a Monolithic Architecture).

Scalability represents the flexibility in the size and capacity of a system[25, p. 9].
This is both in matters of storage and processing power. If the system is handling
100,000 requests per second during the weekdays, but it peaks at 500,000 during
the weekend, how is this done without wasting capacity in the weekdays? How is
growth handled (i.e. add hosts or capacity) when business is expanding to a new
city every week? For reference, Uber currently has tens of thousands of hosts, and
over 10x of what it had 3 years ago. With the Monolithic Architecture, the business
logic could be distributed across multiple application services, but the PostgreSQL
instance could not (atleast not without a larger distribution effort).

Reliability represents the probability that a system behaves as intended[25, p.
322]. This generally becomes harder the larger the system is, since program flow
becomes harder to keep track of. The Monolithic Architecture had an enourmous
code-base with a lot of different functionality. The Monolithic Architecture also
meant a single point of failure, which isn’t very reliable.

Availability represents the system uptime[25, p. 322]. If a system has a avail-
ability requirement of 99%, it is allowed to be unreachable less than 15 minutes per
day. For reference, most of Uber’s systems have an availability requirement of 4
9’s (99.99%), which is less than 9 seconds per day (or slightly below an hour per
year), and many critical systems have an even higher requirement. What unreach-
able implies depends on the business impact of the system. To be more precise,
any system will have a Service-Level Agreement (SLA) that describes exactly what
requirements are set around the system. It can be any kind of unreachable, i.e. not
only during failures, but also during upgrades. As mentioned before, the Monolithic
Architecture means a single point of failure, which results in bad availability.

Extensibility represents the possibility for future growth[25, p. 8]. A Monolithic
Architecture, as mentioned, innately has bad extensibility. Extending it requires an
update of a very large system, which can cause downtime.

Table 1.1 describes where the requirements conflict:

2
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1.1.1 Web Services
In order to handle the previously mentioned requirements, the Monolithic Archi-
tecture had to go. A completely distributed and decentralized system, such as a
Service-Oriented Architecture[20] (SOA), would require a big migration and intro-
duce other challenges and complexity, such as obviousness[16] (making interaction
between distributed resources obvious), but given the nature of Uber’s growth, it
was the only way forward. This way new functionality could be added modularly
as a web service and be updated independently instead of being part of the primary
code base.

Uber now has an SOA[16] (specifically a microservice architecture[14]) with
thousands of different microservices, each with many instances, running across
Uber’s private datacenters. In terms of the previous requirements, a microservice
architecture opens up to other challenges.

Scalability isn’t a question of having enough application servers anymore. In-
stead the responsibility has shifted towards services and their owners instead, which
can be hard to manage.

Reliability can be hard to get right. States can get messed up. Debugging
suddenly happens across different services, processes or even machines, instead of
being contained within a single codebase.

Availability is now on a per service basis as well.
In regards to extensibility, a microservice architecture can also be extremely

hard to manage when it grows out of control. Microservices and their dependen-
cies can be hard to keep track of and therefore hard to decommission. Uber has
around thousands of different microservices, but only an estimated 50% of them are
actively used. Initiatives to shut them down are hard, since nobody knows the full
dependency graph.

Even though managing an SOA can be hard, it is still a huge improvement
from the Monolithic Architecture. Uber is still continuously expanding its business
with great velocity, which would have been slowed down greatly, if the Monolithic
Architecture hadn’t been replaced.

1.2 Reliable Microservice Deployment
With a SOA and the different requirements it introduces, letting a developer or team
manage their own service from end-to-end (meaning server provisioning, building
an image, installing the image, monitoring) quickly becomes infeasible. First of all,
time is wasted in the process of doing all of these steps manually. Secondly, manual
and cumbersome work is more prone to errors, due to the human element. Thirdly,
the systems will quickly become heterogeneous (unless concrete policies exist, but
even with them, they will be hard to enforce), which complicates troubleshooting,
error handling and outage mitigation. Consistency is key. Lastly, it is insecure, since
service owners have to have direct production access. To get rid of the human ele-
ment and all of these issues, a Shared Compute Platform (SCP, Grid Computing[25,
p. 17-20]) is introduced in order to automate and align the processes. A SCP lets
a user use resources without having any direct access to them. It also provides ef-
ficiency, since multiple services with different owners can live on the same resource
independently, allowing for CPU scavenging. It requires alignment between service
owners and the platform, since a SCP innately has a high degree of heterogeneity
(it’s what makes it different from traditional clusters) - although not as high as
on an unmanaged SOA. Service management is basically made scalable, but at the
price of extensibility, since alignment usually means restrictions. Scalability here
is, however, extremely important, so it gets priority, and at the end of the day,
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extensibility is still preserved with certain restrictions. Automation also provides
reliability and availability, since it is less error-prone, however this is only under the
assumption that the automation works, since errors can also happen here.

1.2.1 uDeploy
uDeploy[24] is Uber’s interface to their SCP. It will be used the primary example
of the use-case of the DSL throughout this thesis. It was created to relieve the
service owners from worrying about single hosts and cluster management, by instead
providing an interface to the infrastructure as a resource pool, exposing generic
resources in certain locations. uDeploy itself consists of many microservices[24]
(uBuild, uDeploy Aggregator etc.), that has to do work in a specific order (build,
upgrade etc.). This makes uDeploy a complex service[25, p. 553]. uDeploy basically
makes it possible to manage a service’s life cycle, i.e. deployment, rollback, upgrade
etc. Depending on the policy, an operation (e.g. a rollout or a rollback) can finish
within minutes, without any manual work from the user except for pushing a button.
Which policy depends on a lot of things, but in general, Uber categorizes services
by tiers depending on their business impact (from 0 to 5, 0 being mission critical
services) with different policies applying to different tiers.

Deployment Policies

Beyer et al. argue that running reliable services require reliable release processes[8].
To give an idea of how management of a service in uDeploy can vary, here are a
few examples of different deployment policies that uDeploy offers, in order to make
releasing reliable.

Incremental Deployment is the most common deployment policy at Uber,
where a service will be deployed incrementally in zones of increasing size. Say
deployment happens in 4 increments, then the first bump could represent a Canary
release[22] of 5% of the desired instances. Once faith in the iteration has been estab-
lished (through e.g. monitoring or smoke tests), the release will proceed to the next
bump which could be 15% (resulting in deployment to a total of 20%), then 30%
(to reach 50% in total) and at last the remaining 50%. This means an error in the
service being upgraded will only affect a small fraction of the service’s instances.
Even in situations where a zone can affect a whole failure domain (isolated area
that will be compromised), incremental deployment will only deploy to one failure
domain at a time. It’s mandatory for tier 0 and 1 services (with very strict SLA’s)
to upgrade using Incremental Deployment, since their business impact is critical to
Uber. Figure 1.1 shows this policy as a flow diagram (or state machine).

Blue Green Deployment is another well-known deployment policy, where in-
stances are divided into two deployments, a blue and a green one (figuratively
speaking). At all times, only one of the deployment is serving live traffic. Mean-
while, the other one is either upgrading or acting as a staging environment to give
confidence in the release. This one isn’t used actively at Uber, but would be very
easy to implement using uDeploy. A similar situation with the two deployments
also sort of happens with Incremental Deployment, since it also only deploys to one
datacenter at a time and then monitors that for a while. This means that Uber can
always fall back to the other datacenter during the monitoring if the release blows
up the entire stack. Uber does, however, serve live traffic out of all datacenters by
default.

5



Figure 1.1: Incremental Deployment on two sets of Data Centers

Other types of deployment policies are available for services, depending on their
requirements. E.g. Uber has emergency policies, where the different safe-guards
are deprioritized in order to speed up the process.

1.3 Web Service Orchestration
As mentioned in section 1.2.1, uDeploy is a complex service. It is responsible for
transactional ’operations’ implemented by invoking multiple web services (imple-
menting the upgrade mechanisms, build system etc.) in the right order. Web
Service Orchestration (Tanenbaum calls it Web Services Coordination[25, p. 552-
554]) is a way to handle the coordination needed, when calling microservices in a
specific order according to some policy (Tanenbaum calls it a Coordination Pro-
tocol, although it will henceforth be referred to as a policy). Deployment Policies
could be examples of such policies. A mental model of a policy could for example be
a Petri net[21] (a graph structure), where places will be states and transitions will
be steps. Figure 1.2 shows a simplified Petri net (with transitions being rectangular
and places being oval) modelling a specific policy. The policy first builds an image
of the service and then iteratively deploys it. For uDeploy to work, it needs an
orchestrator to coordinate the steps needed to execute the policy.

1.3.1 uOrchestrate
uOrchestrate is an orchestrator used by uDeploy. Basically, it coordinates what
needs to happen according to a Workflow (a policy, Uber’s own Coordination Pro-
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Figure 1.2: A mental model of a policy modelled as a Petri net

tocol) provided by a user. Figure 1.3 describes the guarantees uOrchestrate provide.
A Workflow consists of a number of steps (or Actions), governed by a control-flow.
An Action represents an RPC to an arbitrary web service. The result of the call
is read back into the state of the Workflow to be available during the rest of the
execution. When a Workflow is activated (either manually or invoked by another
service), uOrchestrate will make sure it gets executed, no matter how long it might
take (which can be a while, considering lengthy monitoring periods). Distributed
workers continuously and repeatedly poll a shared queue for the next step (along
with its state), that is ready to be executed. Once a worker retrieves a step, it exe-
cutes the step and puts the next step (which depends on the result of the previous
step) back in the queue, meaning Workflows can be run concurrently. In figure 1.2,
transitions are steps and places are states. uOrchestrate can be scaled according to
the load, due to its design. uOrchestrate is general-purpose, in the sense that it has
lot of different use cases and is used in many different internal systems, but it was
originally developed for uDeploy, where it handles the coordination of steps needed
for specific task. Technically, a Workflow is modelled by a Petri net (making the
mental and the actual model converge) and executed by a Petri net simulator.
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• Reliability: Guarantee that the Workflow runs to the end

• Persistence: Do not lose the Workflow state, even if a machine crashes

• Observability: Report progression and current state

• Reusability: Primitives for a service should be usable in multiple workflows

Figure 1.3: Guarantees provided by uOrchestrate

There are different tasks when managing a service’s life cycle and different types
of services and deployment policies and neither remain static as Uber’s situation
changes. The Cartesian product results in a large number of different policies
needed. It simply isn’t scalable to have a set amount of policies, meaning it should
be possible to create, import and execute user-defined Workflows decoupled from
deployment of uOrchestrate (meaning all of uOrchestrate shouldn’t have to be up-
graded everytime a Workflow needs to be added).

Currently, there exists more than 300 different policies, divided into bundles
with specific areas of responsibility, all of them hand-tailored to the specific task
they are meant to fulfill. Some of them are simple and short, others consist of
complex graphs with a lot of data. uOrchestrate has many use cases and it isn’t
only used by uDeploy anymore. Other potential users, however, hesitate to embrace
it, primarily because it’s complex to use.

1.4 Workflow Language
In order to let users of uOrchestrate define their ownWorkflows (such as the uDeploy
developers defining Deployment Policies), a Domain-Specific Language[13] (DSL)
was introduced. A DSL is a special-purpose programming language focused com-
pletely on its domain. This allows the creator of the language to model it precisely
after the problem it needs to solve, in order to be able to express it more clearly.
This can be done by following particular programming language paradigms, that
fits well with the model. The user can then use the DSL to solve problems in
the domain. WL1’s documentation can be found in appendix B. Figure 1.4 shows
a sample Workflow that implements the simplified Petri net in figure 1.2. It has
name and description as meta-data (lines 1-2), takes two typed arguments with de-
scription meta-data (lines 3-9) and returns a map with the key build_size pointing
at the data stored in build_ref['size'] (lines 10-11). The workflow (line 12) key
describes the program flow, which in this case consists of a single build invocation
(line 13) and an iteration (starts at line 17) over the list clusters that in each loop
invokes deploy (line 21).

1.4.1 Philosophy
When the original DSL (referred to as WL1) was defined, it was inspired by Petri
nets (as mentioned in 1.3.1) and a number of different programming language
paradigms. The language has inspirations from both data-driven programming,
declarative programming and imperative programming. It is data-driven in the
sense, that the data defines the flow of the program. When running, it exposes its
entire state through endpoints, giving the outside world a way to define an inter-
face to the Workflow. It is declarative in the sense that the goal is to declare the
problem instead of declaring how to solve it. This was especially true in early de-
velopment where Workflows were thought to be mostly sequential pipelines without
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1 name: deploy_service_to_cluster
2 description: Deploys service to cluster
3 input:
4 - name: service
5 type: service_id
6 description: service_id of service
7 - name: clusters
8 type: list
9 description: clusters to deploy service to

10 output:
11 - build_size: build_ref['size']
12 workflow:
13 - build:
14 name: build_ref
15 args:
16 service: service
17 - iterate:
18 for: cluster
19 in: clusters
20 sequential:
21 - deploy:
22 args:
23 build_ref: build_ref
24 cluster: cluster

Figure 1.4: Workflow sample

any control flow. It has imperative and procedural aspects, when looking at more
complex Workflows consisting of subroutines or control flow statements. This is the
philosophy in regards to defining program flow. In regards to actually modelling
the flow, we also use Petri nets. Petri nets provide us with an exact mathematical
definition and theory surrounding process analysis, which we can derive guarantees
from. Hamadi et al.[17] defined an algebra with corresponding formal semantics
for Web Service Orchestration, that directly translates into Petri nets. Petri nets
also support iteration and concurrency, which is a big part of WL1’s power. It
provides the user with data transformation through Python expressions. Python
was primarily chosen due to the expressiveness of single expressions. It is very
powerful when it comes to transforming data objects, but it also restricts the user
to one-line expressions, enforcing conciseness and avoiding a polluted scope. When
discussing DSLs, there is a clear distinction between internal and external DSLs[13].
Fowler describes an Internal DSL as a DSL hosted by another programming lan-
guage, meaning the DSL is written using the other programming languages syntax
(or atleast some subset of it) and an External DSL as a DSL with its own syntax
and parser. Depending on perspective, WL1, in a sense, is a either a hybrid (mean-
ing it’s hosted within YAML, but in a way where it has its own syntax and can be
evaluated at runtime) or neither of them (meaning it doesn’t have its own parser
and its host language isn’t a programming language - just the syntax).

1.4.2 Workflow Language Compiler
Figure 1.5 shows a simplified version of the current compilation pipeline for WL1.
YAML is loaded into a Python dictionary that serves as an intermediate data struc-
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ture, before further compilation. It is then parsed into an AST that in turn is used
to generate a Petri net. The Petri net is executed in a runtime environment hosted
by uOrchestrate (basically making it a Petri net interpreter).

Figure 1.5: uOrchestrate’s Workflow compiler

1.4.3 Syntax and Semantics
WL1’s syntax is a subset of YAML with embedded Python expressions. YAML was
chosen since it fits well together with the data-driven and declarative philosophy. It
is great for structuring data and it has a declarative feel to it. WL1 makes it possible
to use different strategies when managing a service in uDeploy by executing different
Workflows according to the strategy. Figure 1.6 shows the syntactic components of
WL1 (except for phases) as a sort of pseudo-Backus-Naur form (BNF).

WL1 consists primarily of Workflows and Actions (statements). Actions, as
mentioned, are RPCs and Workflows are small programs that define program flow.
Program flow is constructed using different mechanisms of the language, such as
invocations (calls) and control structures. Workflows and Actions can be invoked
by other Workflows. In terms of control structure WL1 has sequential and parallel
execution of statements, iterative or parallel loops and conditional branching. In
order to handle data, Python expressions can be used in certain situations to do
data transformation.

Workflows and Actions are described using the DSL, imported into uOrchestrate,
which compiles it into a Petri net and stores it. The syntax generates a Petri
net, which will be finite state (meaning the DSL isn’t Turing complete). Control
structures are translated into Petri nets (meaning there is a well-defined set of Petri
nets corresponding to the control structures) similarly to how Hamadi et al.[17]
does it, e.g. a Parallel Loop will be translated into a Petri net consisting of many
places and transitions, where the transitions manipulate the state, such that the
exit place of the Petri net will have the state resulting from a Parallel Loop done on
the entry place’s state. This proves by construction, that the Petri net will behave
correctly when generated from the syntax. On request of an execution (or run) of
a Workflow, the first step is added to the queue for the workers to pick up.

1.4.4 Runtime
As mentioned in section 1.3.1, uOrchestrate has workers repeatedly polling a shared
queue. Once a Workflow is activated, it will be put in the queue where the state
will be the entry place. Everytime a worker pulls it from the queue, the Workflow
and its state will either be looked up in cache or compiled into a Petri net (and
stored in memory). uOrchestrate then works as a Petri net interpreter, where it
can execute transitions on a Petri net given its state. As mentioned in the previous
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section, control structures will be compiled into Petri nets with many places and
transitions, meaning the Petri net will have more steps than what appers from the
syntax. One step, though, can cover multiple transitions, if none of them has any
external side effects. The resulting state and the Workflow will be put back in the
queue. Python expressions are executed with the state given as the scope as part
of transitions.

1.4.5 Tooling
Tooling refers to the language toolchain, i.e. a set of programming tools that can in
some way improves development in the particular language. This can be everything
from performing complex tasks such as debugging to improving developer experience
through editor integration. WL1, being an internally developed DSL, doesn’t have
an impressive toolchain, but there is some. Using YAML for its syntax provides
it with some of YAMLs tooling. That is, WL1 benefits from the tooling that isn’t
subject to what Fowler calls Symbolic Integration and the Symbolic Barrier[13].
Symbolic Integration focuses on the integration between the base language and the
DSL, and the Symbolic Barrier is what limits our ability to manipulate the overall
program. More specifically, YAML has editors that provide syntax highlighting and
linters that highlights syntax errors, but the lack of Symbolic Integration between
WL1 and YAML creates a Symbolic Barrier, that makes the tooling less powerful,
since syntax highlighting in YAML isn’t syntax highlighting in WL1 and linting in
YAML isn’t linting in WL1.

Dedicated Tooling

Dedicated tooling has been developed for WL1. One example is orchestratorman
which is a pytest[1] plugin that makes it possible to integration-test Workflows on
an actual uOrchestrate instance. Actions and Workflows can be stubbed or mocked
and state can be inspected in order to ensure correct behaviour. Another example
is different runtime handles that provide various debug functionality.

1.4.6 Namespaces and Bundles
When uploading Workflows to uOrchestrate, they are uploaded as part of a bundle.
The use of bundles is how uOrchestrate handles dependencies - any Workflow in
a bundle can call all the other Workflows or Actions in that same bundle. Fur-
thermore, a bundle can import other bundles as dependencies, which allows the
bundle’s Workflows to call the imported bundle’s Workflows and Actions as well.
As mentioned earlier, there exists more than 300 different Workflows, all of them
written in WL1, split 30 bundles.

1.4.7 Example: Incremental Deployment
This example takes a look at Incremental Deployment (described in section 1.2.1)
as it would be implemented using uOrchestrate with both WL1 and Workflow Lan-
guage v2.0 (WL2). To reiterate, deployment is basically done incrementally, mean-
ing an upgrade is deployed to a subset of service instances at a time to allow the
service to run on the subset until confidence in the revision (the upgrade) has been
established. The release process will then proceed with the next subset (until all
service instances have been upgraded). Figure 1.7 shows Incremental Deployment
as a stack diagram (or a nested state machine), where each frame represents a Work-
flow. A simplified version of each Workflow (as both YAML and Python) can be
found in figure 1.8. First, an image of the service is built from a service name and
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a git reference (line 8-12 in figure 1.8g and line 3 in figure 1.8h). It is then deployed
to two pairs of data centers sequentially. It is then deployed to the two data centers
in each pair in parallel with the rollout Workflow (figure 1.8e and 1.8f). Each data
center is partitioned into four zones of increasing size. The service is then deployed
sequentially to each zone with the rollout_cluster Workflow (figure 1.8c and 1.8d).
After each deployment, the health of the service is monitored (automatically and
manually), in order to ensure that everything is working as intended in the partic-
ular zone. The Workflow will continue to the next zone, when certain requirements
have been satisfied, e.g. a period of time with automated monitoring or manual
acknowledgement. In each zone, an upgrade_deployment Workflow is started, that
transfers the build to the zone, does a rolling upgrade (a few at a time) of the
current service instances to the new one and monitors the newly updated service
instances (figure 1.8a and 1.8b). After having deployed the first pair of data centers,
the Workflows moves on to the next pair.

1.4.8 Conclusion
The number of Workflows and Bundles indicates that WL1 has definitely been
useful. Usability has always been one of the goals of uOrchestrate and WL1 was de-
signed accordingly with simplicity in mind, but due to the rapid growth of Uber and
the increasing complexity of the technological infrastructure, complexity of Work-
flows increased. The intended simplicity made it overly hard to implement complex
solutions, and due to compounded technical debt, it has never been resolved. Users
have noticed this, and this is the reason this thesis sets out to solve this problem.
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1 # Workflow
2 name: <string>
3 description: <string>
4 input:
5 - <variable>
6 output:
7 - <variable>: <expression>
8 workflow:
9 - <statement>

10

11 # Action
12 name: <string>
13 extends: <string>
14 action:
15 condition:
16 pre: <expression>
17 post: <expression>
18 post_feedback: <expression>
19 request:
20 url: <string>
21 parameters:
22 - <variable>: <expression>
23 method: <string>
24 body:
25 - <variable>: <expression>
26 headers:
27 - <variable>: <expression>
28 returns: <integer>
29 retry:
30 wait: <integer>
31 max-retries: <integer>
32 output:
33 - <variable>: <expression>
34 input:
35 - <variable>

Figure 1.6: WL1 syntactic components (Workflow and Action)
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36 # Conditional
37 do:
38 if: <expression>
39 sequential:
40 - <statement>
41

42 # Iterate
43 iterate:
44 for: <variable>
45 in: <expression>
46 sequential:
47 - <statement>
48

49 # Parallel Loop
50 run_concurrently:
51 for: <variable>
52 in: <expression>
53 output:
54 - <variable>: <expression>
55 sequential:
56 - <statement>
57

58 # Parallel Block
59 parallel:
60 - <statement>
61

62 # Sequential Block
63 sequential:
64 - <statement>
65

66 # Invocation
67 <reference>:
68 name: <variable>
69 args:
70 - <variable>: <expression>

Figure 1.6: WL1 syntactic components - statements (and Control Flow)
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1.5 Hypothesis
The usability of WL1 in uOrchestrate suffers under issues described in section 3
specific to the DSL. In practice, this means that WL1 struggles to gain traction
and adaptation inside the Uber organization.

With these considerations in mind, a new and improved DSL can improve both
the usability and testability of writing Workflows for uOrchestrate. Specifically,
by using WL2, described in section 3, any user will be able to describe a complex
Workflow (consisting of 3 loops and 4 subroutines from 2 imported bundles as
described in section 1.4.7) twice as fast with half as many errors and half as many
lookups in the documentation. The specific improvements can be seen in table 1.2,
described using Quality Attribute Scenarios[6] (QAS). Note that Source, Artifact
and Environment are fixed in all 4 QASes1.

Stimulus Response - system provides: Response Measure

(a) Learn to use system - suggestions & information (through tooling)
- more ’programming-like’-environment

Knowledge gain from
tooling, syntax and
Python up by 100%

(b) Use system efficiently

- look-ahead and auto-completion
- easy navigation (e.g jump to implementation)
- static analysis (correct syntax)
- integrated Python expressions
- local validation

Task time down by
50%

Number of errors down
by 50%

(c) Feel comfortable - more ’programming-like’-environment
- integrated Python expressions

User satisfaction rate up
by 50%

(d) Minimize impact of
errors

- local validation, resulting in:
- correct arguments for calls
- required fields being surfaced more quickly
- format is correct
- quicker testing

Amount of time lost on
error down by 75%

Table 1.2: QAS for improvements

1.6 Method
In order to get an understanding of Uber’s distributed platform, we have used the-
ory from Distributed Systems: Principles and Paradigms by Tanenbaum and van
Steen[25]. We have analysed the usability of their current solution for defining
Workflows, WL1, using a software architectural approach as described in Software
Architecture in Practice by Bass et al.[6]. We have tried to connect the usability
issues with DSL theory from Language Workbenches: The Killer-App for Domain
Specific Languages? by Fowler[13]. Using the results from the analysis, we have es-
tablished requirements and specified a design for a more usable solution using theory
from Bass et al. and Fowler. A protoype of the proposed solution was built using
the overall design and by following good programming practice by amongst other
things using various patterns specified in Design Patterns: Elements of Reusable
Object-oriented Software by Gamma et al.[15].

In order to measure the success of the proposed solution, we have specified 4
Quality Attribute Scenarios on Usability with specific goals. We have also pointed

1Source: Workflow designer (user), Artifact: Workflow Design, Environment: Runtime & Con-
figuration
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out 3 particular weaknesses of WL1, that can be evaluated in isolation. Evaluation
was done in two parts: One through a workshop with a variety of participants doing
an experiment in order to evaluate the 4 QAS. The other through a questionnaire
sent to a mix of workshop participants and actual users of the new language.
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1 name: upgrade_deployment
2 description: upgrade deployment
3 input:
4 - service
5 - bld_ref
6 - path
7

8 workflow:
9 - udeploy.transfer:

10 args:
11 - service: service
12 - build_ref: bld_ref
13 - uns_path: path
14 - udeploy.upgrade:
15 args:
16 - service: service
17 - build_ref: bld_ref
18 - uns_path: path
19 - udeploy.monitor:
20 args:
21 - service: service
22 - build_ref: bld_ref
23 - uns_path: path

(a) upgrade_deployment in WL1

@workflow('upgrade deployment') 1

def upgrade_deployment(service, bld_ref, path): 2

udeploy.transfer(service, bld_ref, path) 3

udeploy.upgrade(service, bld_ref, path) 4

udeploy.monitor(service, bld_ref, path) 5

(b) upgrade_deployment in WL2

1 name: rollout_cluster
2 description: rollout to cluster
3 input:
4 - service
5 - build_ref
6 - datacenter
7

8 workflow:
9 - iterate:

10 for: zone
11 in: >
12 "['prod1',
13 'prod2',
14 'prod3',
15 'prod4']"
16 sequential:
17 - upgrade_deployment:
18 args:
19 - service: service
20 - bld_ref: build_ref
21 - path: "'uns://{dc}:{zone}'.

format(dc=datacenter, zone=zone)"↪→

(c) rollout_cluster in WL1

@workflow('rollout to cluster') 1

def rollout_cluster(service, 2

build_ref, 3

datacenter): 4

with Loop(['prod1', 'prod2', 'prod3', 5

'prod4']) as zone: 6

uns_path = Format('uns://{dc}:{z}', 7

dc=datacenter, 8

z=zone) 9

upgrade_deployment(service, 10

build_ref, 11

uns_path) 12

(d) rollout_cluster in WL2

Figure 1.8: Incremental Deployment example
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1 name: rollout
2 description: rollout build
3 input:
4 - service
5 - build_ref
6

7 workflow:
8 - iterate:
9 for: dcs

10 in: >
11 "[['DCA1', 'PVG1'],
12 ['SJC1', 'PEK1']]"
13 sequential:
14 - run_concurrently:
15 for: dc
16 in: dcs
17 sequential:
18 - rollout_cluster:
19 args:
20 - service: service
21 - build_ref: build_ref
22 - datacenter: datacenter

(e) rollout in WL1

@workflow('rollout build') 1

def rollout(service, build_ref): 2

with Loop([['DCA1', 'PVG1'], 3

['SJC1', 'PEK1']]) as dcs: 4

with LoopAsync(dcs) as dc: 5

rollout_cluster(service, 6

build_ref, 7

datacenter) 8

(f) rollout in WL2

1 name: incremental_deployment
2 description: deploy service
3 input:
4 - service
5 - gitref
6

7 workflow:
8 - ubuild.build:
9 name: build_ref

10 args:
11 - service: service
12 - gitref: gitref
13 - rollout:
14 args:
15 - service: service
16 - build_ref: build_ref

(g) incremental_deployment in WL1

@workflow('deploy service', main=True) 1

def incremental_deployment(service, gitref): 2

build_ref = ubuild.build(service, gitref) 3

rollout(service, build_ref) 4

(h) incremental_deployment in WL2

Figure 1.8: Incremental Deployment example (cont.)
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Chapter 2

Related work

Many big companies working with large distributed systems have a way to execute
simple jobs under specific guarantees. These guarantees vary on the company and
the requirements of the jobs they want executed. Usually, reliability and scalability
are a given, due to the nature of the companies, but other guarantees might only
be relevant to certain use cases. The following is a discussion of some of these
companies approaches to their language design for job definitions.

2.1 Amazon
Ever since their expansion into on-demand cloud with AWS launching in 2006,
Amazon has been a pioneer in large distributed systems. They have been in the
same situation as Uber (albeit many years ago) and they emerged victorious. They
operate at many times the size of Uber (host-wise) with millions of servers. From
an infrastructure perspective, they are definitely one of the best in the world, so
it’s an obvious direction to look for inspiration. And it just so happens, that one of
their products are very similar to uOrchestrate: Their Simple Workflow Service[5]
(SWF). SWF also does Web Service Orchestration (as described in section 1.3) and
provides users with an easier way to combine the power of different services from
their product line.

2.1.1 Simple Workflow Service
SWF makes it possible for AWS users to create Complex Services (as described in
1.2.1), by letting them define transactional ’operations’ (policies) consisting of invo-
cations of multiple services in a specific order. A policy is also called a Workflow in
SWF and they are similar in concept to the Workflows of uOrchestrate. They both
represent a series of steps (that can be run either synchronous or asynchronous),
where each step can potentially change the state of the Workflow. Although SWF
is very general and can be used in many ways (which also goes for uOrchestrate),
the original intent was to have steps be interactions between their different services,
which is also the case for uOrchestrate. A comparison of the two can be seen in
table 2.1.

When comparing the two, it is crucial to keep the end-users and the development
time in mind. SWF has a much larger user base, and they have to persuade them to
use their product. However, it has also had far longer to mature to the state it is in
now, which probably means a smaller amount of technical debt than uOrchestrate.
SWF and uOrchestrate both aim to be reliable and consistent solutions to the
same problem. In addition to being reliable and consistent, SWF has been able
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Amazon Simple Workflow Service Uber uOrchestrate
User Base External (and internal due to dogfooding). Internal only (for now)

System
Maturity

Amazon uses dogfooding a lot to get the best
possible product. SWF was released to the
public in 2012, but was probably used internally
since way before that. It probably has more
dedicated developers than uOrchestrate as well.
In general, SWF is a lot more mature, so we have
to keep that in mind, when we compare the two.

uOrchestrate has only existed for 2 years, but it has been
used a lot in those two years (especially by the developers
- dogfooding). Not nearly as mature as SWF, so still contains
a fair amount of technical debt. For this reason, we have to be
more selective and restrictive when it comes to the goals and
guarantees we want to achieve. We can only prioritize a few.

Design
Goals Reliability, scalability, ease of use and flexibility Primary: Reliability, persistence, observability and reusability

Secondary: Usability, testability

Language
Choice

SWF is an external product, so they want it to
be language-agnostic. Due to that Amazon
has developed libraries for any big language.

uOrchestrate is only used internally. The YAML language
didn’t take advantage of this since everybody has to learn
a new language to be able to use it. Using one of Ubers
primary languages (Go, Python or Java) would be preferred.

Table 2.1: Comparison of uOrchestrate and Amazon SWF

to achieve ease of use (a lot of time shouldn’t be spent on acquiring the skills to
design and implement Workflows) and flexibility by implementing SDKs for many
different, popular languages such as Python and Java, that makes it possible for any
developer to write in their preferred language in a procedural way. ’Ease of use’-
and flexibility-wise, uOrchestrate doesn’t offer much. When writing Workflows in
WL1, it feels like writing a document, not coding a program. It is procedural, but
tainted by YAMLs syntax. Language-wise, there are no alternatives to WL1.

uOrchestrate only has internal users and it’s original Return on Investment
(ROI) isn’t based on convincing users to use it. First and foremost, it was made for
uDeploy and was designed with that in mind. It has only gotten more users because
it actually is very useful to other parts of the organization. With the technical debt,
it is rather impressive that the user group grew without any major evangelism. The
benefit from convincing other internal teams to use it is to save developer time
from Uber’s perspective, which of course is important, but as mentioned, priorities
were elsewhere at the time. That is why the neglected goals (such as usability and
testability) haven’t been achieved. The sacrifices were necessary at the time, but
now we try to redeem it and hopefully we can learn from SWF.

Usability-wise in general, uOrchestrate might have a slight edge compared to
SWF if the low-hanging fruit are prioritized. SWF is more intuitive than uOrches-
trate at the moment, but SWF has to integrate with all of Amazons product line,
fit into as many language models as possible and in general has to be more general-
use than uOrchestrate, so there are a lot of constraints as well. If uOrchestrate’s
usability got improved, it could feel as intuitive or more. Since all of the communi-
cation happens through user-defined requests (RPCs), it doesn’t have to integrate
directly with any other systems - that is on that particular system to expose the
right end-point. It also doesn’t have to accept any language, since our customer
base is internal. Thus, uOrchestrate is more simple structural and functionality-
wise, even though it in a way stays as powerful through facilitating coordination of
powerful services.

This means that we, contrary to Amazon, can pick whatever language we prefer
and tune it to fit into our desired model. The whole ecosystem around uOrchestrate
is written in Python and parts of the Workflows are even written in Python, so where
Amazon has to be completely language-agnostic, we can choose Python which gives
us a big advantage.

By looking at what currently makes Amazon SWF more usable than uOrches-
trate, but also identifying uOrchestrate’s strengths and the benefits from Ubers
particular situation, we can take what Amazon has done well and make it even
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better, by sticking to a single language and focusing entirely on exploiting that.
uOrchestrate might not be as flexible, but it becomes very easy to use.

2.2 Netflix
Netflix is another large company that has a very large infrastructure with a mi-
croservice architecture. They use AWS as their cloud provider, but have built their
own continuous delivery platform called Spinnaker[19]. Netflix has open-sourced
Spinnaker, which means that anybody can set it up and use it. Companies the
size of Netflix open-source products (Uber does it aswell, but haven’t open-sourced
uOrchestrate) for a number of reasons, where some of them could be: ideological
(belief in the open-source movement), to create a community around the product
(and hopefully get them to contribute) and to attract talent (by showing the cool
software the company makes). There can definitely be other benefits as well, but it
is also hard work, since it puts a lot of other requirements on the product. The two
most important being: the code is available to anybody, so every release has to be
carefully reviewed, in order to avoid backlash and there suddenly is an external user
group as well, increasing the number of feedback channels. The first requirement
is something that should be prioritized anyway. Basically, like any email should be
written as if it could end up on the front page of The Guardian, any code should
be written as if it could be reviewed by anybody in the world (although this can be
hard, when technical debt is actively being accumulated). The second one is more
interesting, since this relates directly to the usability of the product. Comparing
Spinnaker and uOrchestrate is like comparing apples to oranges - Spinnaker is the
complete continuous delivery platform, where uOrchestrate is only a specific part.
We need to compare Spinnaker to uDeploy to see if we can find any takeaways.

Netflix Spinnaker is definitely interesting to analyse, since it solves many of the
same problems uOrchestrate does, but because it is open-sourced and available to
the general public, it also has to be usable.

2.2.1 Spinnaker
As mentioned, Spinnaker should be compared to uDeploy and not uOrchestrate.
If we want to compare uOrchestrate (or more precisely Workflows) to anything,
it should be Pipelines in Spinnaker. However, comparing uDeploy and Spinnaker
could also be useful. Table 2.2 shows a comparison of the two.

Spinnaker primarily lets users define Pipelines through their own UI, although
templating tools have been created by the community (reward from open-sourcing).
Netflix has also started development on their own codifying tool[27] (due to popular
demand). We could try to improve usability on uOrchestrate by providing a UI for
the users, but considering Netflix’s experience with community driven templating,
their effort towards creating their own codifying tool and an internal observation
in Uber on preference of CLIs and language-based solution over GUIs, this might
not be the best approach. We can however try and take the best from both world.
The UI provides a natural flow to create Pipelines and their stages. It exposes
the necessary fields at any given time through forms made for that particular pur-
pose. Expressions in Spinnaker are written in the UI using SpEL, Spring’s Ex-
pression Language[4], presumably because Orca was originally written using Spring
Batch[12]. In uOrchestrate, it neither feels natural nor is any help given regarding
what to write or fill out. One advantage with WL1 is that expressions are written
in Python, which is a more popular language than SpEL. If we try to make the
language-based solution more natural (e.g. by making it feel like actual program-
ming) and provide the user with suggestions and auto-completion (e.g. through

22



IDEs or tooling), we can maybe achieve this easy way of writing Workflows.
It is clear that we don’t want to completely copy the process of defining Spin-

naker’s Pipelines by providing an UI, but by identifying what works and what
doesn’t, maybe we can incorporate some of the features in our own language-based
solution. If we change our language to a properly tooled one and fix the syntax to
something closer to actual programming, then we might get the UI we’d like and
the benefits from Spinnakers way to do things.

Netflix Spinnaker Uber uDeploy
User Base External and internal (open-source) Internal only (for now)

System
Maturity

Spinnaker was open sourced in November 2015,
but used internally before that. It has been under
development at least since 2014. Before Spinnaker,
Netflix used Asgard, so they have probably brought
a lot of experience from Asgard on to Spinnaker.
Furthermore, Spinnaker was open sourced in
partnership with Google, so that’s one of the benefits
of open-source - a wider community.

uDeploy was released in 2014. It has not been open sourced
so the entire development has happened internally in Uber.
It is developed for Ubers particular stack, so it wouldn’t be
easy to open-source and it would probably not get many users
either. Where Spinnaker and Asgard was developed specifically for
cloud solutions (AWS at first, but currently many others aswell),
uDeploy integrates with the different internal solutions, which
at the moment covers both on-premise and cloud (AWS only).

State Machine
Solution

Spinnaker has Pipelines as the abstraction for
strategy. A Pipeline defines the particular strategy
regarding a deployment from when it’s built (baked)
to the final monitoring before the deployment is
completed. Each step is a stage declaring
what should happen. Pipelines are defined in
a web UI or through Spinnakers API and executed
by Orca (a Spinnaker component). Expressions
are written using SpEL.

uDeploy has Workflows as the abstraction for strategy.
Workflows also handle deployment from start to finish. They
are defined in a DSL (YAML based) created specifically for
uDeploy and executed by uOrchestrate. The DSL compiles to a
Petri net, so there can be many more states than it might seem
at first. A Workflow can, however, be separated into phases
that can represent particular steps of the strategy. Expressions
are written in Python. Pipelines and Workflows have the same
functionality, but in a different package.

Usability

In order to achieve usability in Spinnaker, Netflix has
not defined any default language to write Pipelines in.
They provide the user with a web UI (consisting
primarily of forms to fill out representing stages
and metadata) and an API that takes
the same data. The Spinnaker community have
however made efforts towards templating and codify-
ing Pipelines and as a response to that, Spinnaker is
in the process of developing their own templating
solution that is also based on codifying Pipelines.

uDeploy doesn’t provide any UI to define Workflows, so the
usability comes from the structure and the tooling surrounding
the language. Unfortunately, uDeploy doesn’t have much of that
at the moment. It could be possible to build a UI similar to
Spinnakers, but since our users are internal and in general
seem to prefer programming and CLIs to UIs, that would probably
not help us. However, the idea of prompting the user for the
necessary information is good and definitely lacking in the current
language. Could come through suggestions and auto-completion
from the tooling used for developing.

Table 2.2: Comparison of uDeploy and Netflix Spinnaker
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Chapter 3

Workflow Language: from
v1.0 to v2.0

This chapter will present an analysis of the particular problem we’re trying to solve.
First, by taking a look at the current solution and its issues, and then by proposing
a second solution, which tries to solve these issues.

3.1 Workflow Language v1.0
The current Workflow Language (described in section 1.4) was designed with a dif-
ferent idea of Workflows than how they turned out to be. As mentioned in section
1.4.1, they were originally thought of as primarily being sequential pipelines (which
is fairly simple to imagine as a sequence of declaration statements). Eventually,
Workflows became more complex than expected, which the language wasn’t de-
signed to handle very well. WL1, based on YAML, worked well as a declarative
DSL, but once writing Workflows became more imperative, it started to suffer from
usability issues, relating to YAML originally being markup language/data serializa-
tion language.

3.1.1 Issues with Workflow Language v1.0
As described in section 1.4.1, WL1 is either a hybrid of an internal and an external
DSL or neither of them. What this really means is that WL1 gets none of the
advantages of being either, but suffers from disadvantages from both categories.

Syntax

WL1 is limited to its host languages syntax (internal DSL disadvantage), but it also
suffers from the Language Cacophony problem[13] (external DSL disadvantage),
meaning a new language has to be learned in order to be able to use it. YAML isn’t
very intuitive to use for imperative programming/scripting. Programming entirely
in lists and maps (which is what a YAML document consists of) isn’t what users are
used to, and especially when it comes to control flow statements, it isn’t obvious how
to construct them without referring to the documentation. In a sense, it becomes
too declarative (which is part of what it aims to be) which results in verbosity
instead of concise problem formulation. YAML is indentation based, which has the
advantage of being readable, but can be bothersome to construct. The same could
be said about Python, but in Python, it only affects statements, where in YAML it
affects every single detail (combining maps and lists can be particularly tricky).
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Tooling

As described in section 1.4.5, WL1 has fairly limited tooling. Fowler describes
the decoupling between a DSL and the base language as Symbolic Integration[13]
(external DSL disadvantage). Even though WL1 is hosted in YAML, we still suffer
from this. YAML isn’t a programming language, which means it has a very limited
toolchain. YAML editors are limited to basic linting (since they can’t resolve what
level an object should actually be in) and YAML pointers (which WL1 doesn’t use).
The Symbolic Barrier[13] between WL1 and YAML means no syntax checking in
regards to WL1. Referencing other objects, Workflows or Actions isn’t a thing,
since YAML has its own pointer system that editors use. To reference a variable,
the developer has to keep track of the scope himself, since it will be represented
as a string (which editors won’t suggest). To call another Workflow or an Action,
the developer has to remember the name, the parameters, where it’s located etc.
Support for auto-completion or suggestions is limited to previous occurences (so
basically non-existent). Templating doesn’t exist. This is also the case for more
general structures and reserved words, such as control flow statements. See figure
3.1 for an example of a conditional, that checks whether a build_size is larger than
20,000 and makes an alert if so. There is no help from the tooling in regards to
enforcing this structure, which means not knowing exactly how the map should
look costs time, since an error wouldn’t surface before uploading the Workflow. In
general, the language lacks System Initiative[6, p. 122], i.e. it doesn’t provide the
user with any help based on related models (task, user or system).

Python Integration

Python expressions can be used in particular parts of Workflows and Actions, such
as conditionals (branching), when outputting results etc. WL1 integrates badly
with these Python expressions. They have to be passed as strings, so validation is
needed in order to ensure that they behave as intended under the particular scope
in an external environment. It also divides development into two parts or contexts.
Python expressions have to written and tested in a Python environment, and then
copied into a Workflow environment. Testing also becomes troublesome, since these
expressions only exists as strings, which means they have to be manually extracted
to unit-test them. There exists a testing framework (orchestratorman, described
in section 1.4.5), but it takes time to learn and it’s primarily meant for testing
entire Workflows and Actions, not for unit-testing expressions. This is no different
from SpEL, the language Netflix Spinnaker (described in section 2.2.1) uses for
expressions, so it might be a hard problem to solve.

The lack of usability in WL1 isn’t just a nuisance to the users. Using uDeploy
as an example, the issues can also indirectly lead to outages1. Users are prone to
making errors, when they find the tool hard to use or the results hard to test - just
as with any other programming language. The only difference from a normal pro-
gramming language is that uOrchestrate and WL1 is used to orchestrate uDeploy,
which is an integral system with a large business impact within Uber. A uDeploy
outage can be very costly to Uber, since we are dealing with an integral part of
Uber’s deployment pipeline. An example could be an error-ridden rollback feature.
If rollbacks suddenly stop working, the risk of developers deploying important pieces
of code with critical bugs is suddenly a lot bigger, since it will be harder to mitigate
the damage done.

1Unavailability of integral parts of Uber
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Conclusion

In essence, we have a language with a steep learning curve, used to orchestrate
integral services within Uber, meaning errors can be very costly (e.g. when affecting
uDeploy). It also presents a big reward in terms of productiveness and automation
(looking at the existing amount of work done by uOrchestrate). It has a small,
albeit very active, user group, despite being a very powerful tool, although it might
be useful to other teams within Uber, given its broad use-case.

1 do:
2 if: int(result['build_size']) > int(20000)
3 sequential:
4 - alert_big_build

Figure 3.1: Conditional Workflow step as YAML

3.2 Workflow Language v2.0
We would like to improve on our current solution by making a new and better
Workflow language, based on the knowledge and experience derived from the exist-
ing language. We want to make deliberate decisions and make the right choices in
advance in order to achieve this. The following is a discussion of aspects of the new
language to decide.

3.2.1 Fundamental Changes
First of all, we need to look at whether we’re satisfied with WL1’s philosophy. This
is crucial to be able to determine which parts of the current language to replace.
If we can already now decide on keeping parts, that would alleviate our workload,
so instead of starting from scratch designing a new language, let’s take a look at
what needs to be changed. The following will be based on the discussion of YAML
as syntax of WL1 in section 3.1.1 and the compilation pipeline described in section
1.4.2.

The current language aims to be primarily data-driven and declarative, but also
allows the user to write procedural and imperative Workflows (which is necessary
for more complex Workflows). It suffers from verbosity and annoying syntax, but
the actual features of the language and Petri nets, along with the runtime, are
useful and work well for defining the program flow. Data transformation provided
through the Python expressions is a crucial feature and nearly all Workflows use
them, so they are clearly important. The original idea behind using Python for
transformation is preserved. Passing them as strings doesn’t work too well though.
We wish to make expressions:

• easier to use

• fit more seamlessly into the new language

• more testable

The last issue section 3.1.1 identified was limited tooling, which isn’t really part
of the philosophy, but definitely an important take-away when designing a new
language. In general the issues with WL1 and what should be prioritized in WL2
can be summed up in three parts:
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• YAML syntax is verbose and annoying -> design better syntax

• String Python expressions don’t integrate very well -> provide similar func-
tionality that is testable

• The toolchain surrounding YAML is limited to markup writing -> pick a
language with a toolchain better suited for programming

In order to make WL2 more succesful than WL1, these problems need to get
solved. A quick analysis of the problem can be found in table 3.1, where the problem
and the most suited approach to a solution in particular areas are described.

Problem Internal vs External DSL Language bias Action item Contributes to (QAS)

YAML syntax is
verbose and annoying

Both, but external gives the
most control over the syntax

Extensible and
dynamic languages
such as LISP, Ruby

and Python

Design better
syntax Row a, b and c in table 1.2

String Python expressions
don’t integrate very well

Internal, since an external
DSL requires a lot more
work to be able to handle

expressions like that

1. Python
2. Any language
with concise and

powerful expressions

Provide similar
functionality

that is testable
Row c and d in table 1.2

The toolchain surrounding
YAML is limited to markup

Internal, since a toolchain
doesn’t come for free
with an external

Any language with a
big community. Python

internally in Uber

Pick a language
with a toolchain
better suited for
programming

Row a, b and c in table 1.2

Table 3.1: Analysis and action item for the 3 main WL1 issues

In conclusion, from the fact, that none of the three action items request funda-
mental changes of the Workflow Language, but rather of the syntax and the tooling,
it seems clear, that our focus is on the frontend of the Workflow Language and not
the underlying semantics of the language. What we need to achieve is a frontend
that can produce the same type of structured dictionary that our YAML subset is
parsed into, but without the issues that we’re seeing at the moment. The earlier
in the compilation pipeline (described in section 1.4.2) the two languages converge,
the easier complete compatiblity between WL1 and WL2 can be achieved, which
is an important feature. With compatibility between the two languages, no major
migration effort of porting existing Workflows will be needed.

3.2.2 Internal vs External DSL
A big decision to make is whether to try and solve this through an internal or an
external DSL. Looking at table 3.1, we see that an internal DSL is preferred in 2 of
the identified issues and an external DSL is largely preferred in 1 (where internal
also has some advantages).

External DSL

Fowler[13] argues that the advantage of an external DSL is the fact that the syntax
and the form is completely up to the creator. This is particularly nice for declarative
programming, which is why external DSLs are often used for query languages. It’s
also easy to evaluate at runtime. The corresponding disadvantage is that a parser
needs to be implemented. Another substantial disadvantage is what Fowler refers to
as the Symbolic Integration (also mentioned in section 3.1.1 as part of the current
issues), which basically means that existing tooling doesn’t integrate with the DSL.
Since one of the current issues is directly linked to tooling, this is unfortunate. A
more specific issue in our case has to do with Python integration, which will also
be hard to do well with an external language (same issues as with WL1). We do,
however, get to pick our own syntax.
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Internal DSL

Some of the advantages of using an internal DSL are:

We don’t need to reinvent the wheel: The host language provides us with a
parser, data structures, expression functionality etc.

The host language brings its community with it: Depending on the language
(which can be chosen deliberately), users might be experienced in the host language
already. There might also be documentation and it could be battle tested.

The host language brings its ecosystem with it: Again, depending on the
language (which can be chosen deliberately), the host language might have a very
useful toolchain.

The biggest disadvantage is:

The DSLs syntax is limited to the host languages syntax: The degree of
how limiting this is depends on the extensibility and how dynamic the language and
its syntax is.

These all depend on the host language, so if we go with an internal DSL, the host
language is key to making it good. Let’s look into some potential host languages.

3.2.3 Language Choice
Usually, when wanting to write a DSL with no specific user base or system in mind,
people will suggest Lisp or Ruby[13] (compared to say C, C++, Java or C#). They
both have large communities around writing DSLs in them and great power to
customize its syntax through macros and abstractions. They are famously dynamic
and extensible. This, however, changes when wanting to write a DSL for an existing
system with actual users. The same requirements apply, but they can be bent if
there are low hanging fruits to pick by using another language. This is the case for
the Workflow Language. The following paragraphs describe the decision to proceed
with Python as the host language.

In terms of uOrchestrate, we have a system written in Python and a language
that uses inline Python expressions. We have already established, that we will
compile our language to an intermediate representation, so the Python-based system
might not be that important, but it is however a small advantage, since it will be
easier to ship a combined product in the same language instead of two different ones.
We also have a CLI written in Python, which will be the first point of contact with
the new language, making integration easier. The testing framework also revolves
around Python and pytest. In regards to the inline Python expressions, there is a
fairly big advantage to gain here. It can be solved using other languages, but that
also means more for developers to get used to.

In terms of user base, Uber has traditionally been a Python house, so a lot of
developers know Python and have an understanding of how to write good Python.
In the same way that WL1’s YAML hasn’t been succesful in the long run, giving
them another DSL in a language they don’t know or feel familiar with might push
them away again. Picking Python would contribute towards row c infigure 1.2.
Other languages used in Uber are Java, Go and JavaScript (for UI). Neither are as
dynamic or provides the same extensibility as Python (except for maybe JavaScript),
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and they don’t fit as well into the ecosystem as Python does either. Go is famously
easy to pick up, but so is Python (which is widely regarded as one of the easiest[11]
languages to learn and very approachable). Uber developers in general use Uber
managed machines, that ships with supported versions and environments for all of
these languages. Using other languages will require setup.

In terms of toolchain, which is one of the core benefits of using an internal
DSL, we have to figure out what we need. A language debugger or a testing frame-
work might not have very high priority, since integration with the DSL needs to be
implemented in order to be able to apply to the Workflow Language (since DSL
execution is very different from host language execution), but an editor or an IDE,
package manager, integrations and community will all help the developer. As men-
tioned, testing uOrchestrate and Workflows already happen in Python, although
it required pytest integration to be implemented. Since Uber historically has used
Python a lot, their own Python package repository works well, which makes it easy
to distribute and install packages as requirements in projects. In addition, Python
is very popular and therefore has a lot of support in all these areas.

In terms of syntax, if we compare how extensible and dynamic Python is to
Ruby and Lisp, we see why Ruby and Lisp are the preferred choice. Python doesn’t
have macros like Ruby or Lisp, which is an incredibly powerful tool syntax-wise.
Instead, one has to rely on Python’s other language constructs such as decorators
etc.

3.2.4 Prototype Study
Now that we have settled on Python if we were to go with internal, lets look at two
prototypes, one internal and one external, and a projection of one of the prototypes,
and compare them with the original language to get a better idea of what solution
to go with.

In figure 3.4a we see a Workflow (upgrade) written in WL1. It’s quite
long, spanning over 45 lines, but it is fairly easy to read and understand for an
experienced Workflow author (in the sense that almost all the data is named and
because indentation gives an initial idea of underlying structure). Looking at it, we
see that it takes 3 input parameters and then does up to 3 different Actions in a
flow depending on a conditional and an asynchronuous loop. YAML as a language
is designed to be readable[7], which we reap the benefits from now. The Workflow
designer, however, might have suffered from the issues touched upon in section 3.1.1.

In figure 3.4b we see upgrade written in an external DSL prototype. The
external DSL is parsed into the intermediate representation by a parser written in
Python. To write the parser, a grammar needs to be designed first. Design goals
of the external DSL was to create a syntax that was both more expressive2 (by
inferring metadata from the program) and forgiving (spaces and tabs don’t matter
- we use { and } as scope delimiters). Python integration is improved a small
amount by distinguishing it from normal strings with ‘ as a delimiter.

The language is shorter and more concise than YAML, but harder to read due
to lack of syntax highlighting and familiarity with the language. Writing in this
external DSL is potentially easier than writing in WL1, since the syntax is more
forgiving, and more efficient, since more can be expressed in fewer lines and words,

2Expressivity meaning practical expressivity - express concisely and readily, i.e. easily express
more in fewer words
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but no further studies supporting this has been made, since the rewards from the
effort were too small compared with the other prototypes. There were no obvious
low-hanging fruits to improve the experience significantly.

In figure 3.4c we see upgrade written in an internal DSL prototype. The
objects, we construct, build the intermediate representation on a .build() call. This
is a very early prototype of the internal DSL. It is very verbose and doesn’t offer
much in terms of expressiveness or Python integration. The tooling advantage so
far is very limited (most editors would autosuggest when it comes to filling out the
constructor parameters). There are, however, a lot of low-hanging fruits that could
easily improve the DSL. To give an idea of some of these low-hanging fruits, we have:
language constructs (decorators, context managers etc.), better Python integration
(needs to be serializable though) and taking advantage of the fact that the language
exists inside the Python runtime with all the power it could potentially provide.

In figure 3.4d we see upgrade written in a much improved internal DSL
written in Python. This is a projection of the final product. We have a callable
Workflow with Python integration, static analysis (both from Python tooling, but
also in regards to models) and a lot of different tools from Pythons toolchain (pytest,
IDEs and editors with autocompletion and suggestions, Pythons module ecosystem
etc.).

Overall, graph 3.2 shows a quick analysis of expressiveness on the vertical axis
and efficiency on the horizontal axis based on the 4 examples.

Figure 3.2: Different approaches primarily considering two aspects

3.2.5 Conclusion
WL2 is an internal DSL (although it still compiles to an intermediate format that
can be executed at runtime), implemented as a Python library, that provides deco-
rators/annotations, context managers and utility functions to write Workflows and
Actions. WL2’s documentation can be found in appendix C. See figure 3.5 for the
Python version of figure 1.4. Decorators exist for Actions and Workflows, context
managers exist for the different control flow statements (see figure 3.6) and the
utility functions exist for everything that didn’t work well as either a decorator or
a context manager. Getting to figure 3.4d (which only has model classes) from 3.4c
requires solving a lot of problems. Figure 3.3 shows a list of the problems and the
necessary solutions. The technical challenges of the language will be presented and
analysed in section 4.
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• Reduce explicit object instantiation

– Make Workflow and Action objects callable
– Represent Workflow and Action objects as Decorated functions

∗ Infer name and input from function object metadata

• Eliminate explicit program flow creation represented by lists

– Create artifical scope
∗ Decorated functions already does this for Workflows and Actions
∗ Represent Control Structures as Context Managed objects

– Create program flow capturing stack

• Eliminate string expressions

– Create lazily evaluated serializable expressions
∗ Create class capable of capturing operations
∗ Inject newly introduced variables into scope as capturing objects

– (Runtime) Deserialize (execute) serialized expressions

Figure 3.3: Hurdles for WL2
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1 name: upgrade
2 input:
3 - name: service
4 type: service_id
5 description: The service to upgrade
6 - name: deployment
7 type: deployment_id
8 description: The deployment to upgrade
9 - upgrade_config

10

11 workflow:
12 - chat.chat_room:
13 name: chat_room
14 args:
15 service_id: service
16

17 phase-start:
18 id:
19 key: upgrade
20 context: [service, deployment]
21 display-data:
22 service: service
23 deployment: deployment
24

25 - do:
26 if: "not upgrade_config.get('next_rev_id')"
27 sequential:
28 - udeploy.chat_message:
29 name: msg_start_build
30 args:
31 room: "chat_room['room']"
32 color: "'yellow'"
33 message: "u'Requesting build of

{service}'.format(service=service)"↪→

34 - run_concurrently:
35 for: failure_domain
36 in: 'list(set(clusters["cluster_names"]) & set(["pek1", "dca1"]))'
37 output:
38 - failed: original_prod1_deployment
39 sequential:
40 - udeploy.get_active_revision:
41 name: original_prod1_deployment
42 args:
43 service_id: '"test-uber-service"'
44 deployment: '"prod1"'
45 dep_uid: '"{svc}: {dep}".format(svc="test-uber-service",

dep="prod1")'↪→

(a) upgrade in YAML
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1 upgrade(service: service_id - "The service to upgrade",
2 deployment: deployment_id - "The deployment to upgrade",
3 upgrade_config)
4

5 workflow: {
6 chat_room = chat.chat_room(service_id=service)
7 @phase-start(
8 key=upgrade,
9 context=[service, deployment],

10 display-data=(
11 service=service,
12 deployment=deployment))
13

14 if `not upgrade_config.get('next_rev_id')` {
15 msg_start_build = udeploy.chat_message(room=`chat_room['room']`,

color=`'yellow'`, message=`u'Requesting build of
{service}'.format(service=service)`)

↪→

↪→

16 }
17

18 for failure_domain in `list(set(clusters["cluster_names"]) & set(["pek1",
"dca1"]))` parallel {↪→

19 original_prod1_deployment =
udeploy.get-active-revision(service_id=`"test-uber-service`,
deployment=`"prod1"`, dep_uid=`"{svc}:
{dep}".format(svc="test-uber-service", dep="prod1")`)

↪→

↪→

↪→

20 } return (failed: original_prod1_deployment)
21 }

(b) upgrade in external DSL
1 def upgrade():
2 service = {'name': 'service', 'type': 'service_id',
3 'description': 'The service to upgrade'}
4 deployment = {'name': 'deployment', 'type': 'deployment_id',
5 'description': 'The deployment to upgrade'}
6 chat_room = Call('chat.chat_room', service='service').phase_start('upgrade',

['service', 'deployment'], display_data={'service': 'service',
'deployment': 'deployment'}).returns('chat_room')

↪→

↪→

7 msg_start_build = Call('udeploy.chat_message', room="chat_room['room']",
color="'yellow'", message="u'Requesting build of
{service}'.format(service=service)").returns( 'message_start_build')

↪→

↪→

8 original_prod1_deployment = Call('udeploy.get_active_revision',
service_id="'test_uber_service'", deployment="'prod1'", dep_uid='"{svc}:
{dep}".format(svc="test-uber-service", dep="prod1")')

↪→

↪→

9

10 return Workflow(service, deployment,
'upgrade_config').with_name('upgrade').sequential( chat_room,
Conditional("not upgrade_config.get('next_rev_id')").sequential(
msg_start_build), Iteration('failure_domain',
'list(set(clusters["cluster_names"]) & set(["pek1", "dca1"]))',
Sequential(original_prod1_deployment), parallel=True).with_output(
failed='original_prod1_deployment'))

↪→

↪→

↪→

↪→

↪→

↪→

(c) upgrade in initial internal Python DSL
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1 @workflow()
2 def upgrade(service, deployment, upgrade_config):
3 """
4 :param service_id service: The service to upgrade
5 :param deployment_id deployment: The deployment to upgrade
6 """
7 chat_room = chat.chat_room(service)
8 phase_start('upgrade', [service, deployment], display_data={'service': service,

'deployment': deployment})↪→

9 with If(not upgrade_config.get('next_rev_id')):
10 msg_start_build = udeploy.chat_message(chat_room['room'], 'yellow',

Format(u'Requesting build of {service}', service=service))↪→

11 with LoopAsync(list(set(clusters["cluster_names"]) & set(["pek1", "dca1"]))) as
failure_domain:↪→

12 original_prod1_deployment =
udeploy.get_active_revision('test_uber_service', 'prod1',
Format('{svc}:{dep}', svc='test-uber-service', dep='prod1'))

↪→

↪→

13 failed = LoopAsync.outputs(original_prod1_deployment)

(d) upgrade in improved internal Python DSL

Figure 3.4: upgrade Workflow in 2 different prototypes, a projection of the improved
language and the original language

1 @workflow('Deploys service to cluster')
2 def deploy_service_to_cluster(service, clusters):
3 """
4 :param service_id service: service_id of service
5 :param list clusters: clusters to deploy service to
6 """
7 build_ref = build(service)
8 with Loop(clusters) as cluster:
9 deploy(build_ref, cluster)

10 return {'build_size': build_ref['size']}

Figure 3.5: Workflow sample as Python

1 with If(int(result['build_size']) > int(20000)):
2 alert_big_build()

Figure 3.6: Conditional Workflow step as Python
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Chapter 4

Implementation

Section 3 proposed an internal DSL written in Python as a solution to the problems
described in section 3.1.1. Proceeding with the proposal, this section will take a look
at how the DSL was implemented, starting at a simple library using Builder pattern
(see example 3.4c) reaching a version, where nothing is created explicitly using a
constructor, but instead created implicitly using all sorts of language constructs
Python provides.

4.1 Model Classes
In order to create a new representation of an existing languages syntax, understand-
ing the current representation is key. What that really means is that we have to look
at the structure (e.g. through the BNF of a context-free grammar) of WL1, since
we want to represent each structural component. Figure 1.6 shows a pseudo-BNF
describing the syntactical components of WL1 (except for phases).

It splits up the Workflow language into these predefined structures: {workflow,
action, call, parallel, sequential, do if, iterate, run_concurrently}. Phases aren’t in
the BNF, since they are a bit different than the others. Each of these structures
have their own reserved words and they always translate into a similarly structured
dictionary. In the original language, each of these structures have been proven to
work (see section 1.4.3), meaning that Workflows constructed by using them will
also work. If we make a one-to-one representation of each structure, we know that
the guarantees from the original representation will be in effect here as well.

As a result, we know we can create a new representation by representing these
particular structures. Two interfaces, Callable and Statement, have also been cre-
ated in order to group the two different types of models. These groups will become
useful in section 4.2.1 and section 4.3. A simplified UML diagram using the Module
Viewpoint[9] of the Model class architecture can be seen in figure 4.1. See example
4.2 for the resulting classes.

We can use these classes as part of the Builder pattern[15, p. 97]. Once the
builder knows what to build, we can build the intermediate representation from the
given information. So far, WL1 and WL2 are not comparable, but WL2 have started
to make progress in terms of the action items specified in table 3.1, particularly in
terms of better tooling, since Python editors are now able to provide suggestions
and auto-completion, instead of the user having to lookup in the documentation.
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Figure 4.1: UML diagram showing the Model architecture from a Module Viewpoint

4.1.1 Schematics
Depending on intended functionality, implementing the logic in the model classes
can take a lot of work. Python isn’t statically typed, so in order to minimize impact
of errors by doing local validation (table 1.2d), the model classes need to implement
type checking, conversion and validation. Serialization is also a requirement. In-
stead of doing this from scratch, it is possible to use libraries that can generate the
model classes from only the necessary information, such as the fields. WL2 uses
Schematics[3], a library that provides typed models classes capable of the required
functionality. It is already the primary model library in uOrchestrate, which makes
it the obvious choice, since it fits into the rest of the data model pipeline (which is
very handy once we start looking at bundles), ensuring consistency. Model classes
with typed fields are made by subclassing Model and defining the fields as class
attributes. Schematics provides recursive validation, conversion between popular
data structures and conversion to serializable dictionaries.

From a Workflow Language v2 perspective it gives us the following advantages:

Validation that provides us with certainty and confidence in our objects, since
they are validated after creation, effectively minimizing impact of errors (improving
on figure 1.2d).

Serialization to dictionaries which we had to implement anyways, since that’s
our intermediate representation.

Alignment with uOrchestrate since we can plug our models into the existing
models (very useful in regards to bundles, which will be elaborated on in section
4.5).

Less code to maintain.

The disadvantage is the fact that we don’t have all the code under control.
Changes to how Schematics do things are done through overrides, which isn’t
always very transparent.
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1 class Callable(object):
2 def __call__(self):
3 pass
4

5 class Workflow(Callable):
6 def __init__(self, name, description, parameters, output, workflow):
7 super(Callable, self).__init__()
8

9 class Action(Callable):
10 def __init__(self, name, extends, description, parameters, output, request,

conditions):↪→

11 super(Callable, self).__init__()
12

13 class Statement(object):
14 def __init__(self):
15 pass
16

17 class Call(Statement):
18 def __init__(self, call, name, args):
19 super(Statement, self).__init__()
20

21 class Parallel(Statement):
22 def __init__(self, parallel):
23 super(Statement, self).__init__()
24

25 class Sequential(Statement):
26 def __init__(self, sequential):
27 super(Statement, self).__init__()
28

29 class Conditional(Statement):
30 def __init__(self, condition, sequential):
31 super(Statement, self).__init__()
32

33 class Loop(Statement):
34 def __init__(self, var, lst, commands):
35 super(Statement, self).__init__()
36

37 class LoopAsync(Statement):
38 def __init__(self, var, lst, output, commands):
39 super(Statement, self).__init__()

Figure 4.2: Model Classes for Workflow Language structures

The advantages of using Schematics are substantial, and the disadvantage is
limited to a few parts of Schematics (meaning only a few overrides is needed to
overcome the challenge), so let’s continue with Schematics. A simplified example of
a model class written in Schematics can be seen in example 4.3.

4.2 Language Constructs in Python
As seen in example 3.4c, defining Workflows continues to be very verbose. All the
information has to be passed into a constructor and there is no real flow to defining
them. As mentioned in figure 3.3, reducing the amount of explicit object instanti-
ations would help, i.e. create a leaner syntax. Python has a lot of functionality in
order to automate explicit or repeated functionality. Decorators can dynamically
alter functionality in regards to function definitions (basically wrapping a func-
tion to modify its behaviour). Context managers can handle an object’s context,
automating setup and teardown (which is useful in regards to the artificial scope
mentioned in figure 3.3).
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1 class Workflow(Callable): # Callable now inherits from Model
2 workflow = ListType(SimpleModelType(Statement), serialize_when_none=True)
3 name = StringType(required=True)
4 description = StringType()
5 output = ListExpressionMapType()
6 parameters = ListType(SimpleModelType(Input), default=[],

serialize_when_none=True)↪→

Figure 4.3: Schematics class for Workflow structure

Python also has a very dynamic object model, meaning everything is basically
an object (including classes, functions etc.). This means we can have objects can
act like functions by defining the __call__[2] method of its class. This makes
it possible to make decorators, that will appear to decorate functions (i.e. wrap
them with functionality), but instead of returning the decorated function, they will
return an arbitrary object implementing __call__ with no noticeable difference to
the user.

It might be possible to take advantage of (or even exploit) this in order to
improve the syntax.

Let’s look at the different approaches to automation and inferring data and see
whether they can help.

4.2.1 Callable Objects
In WL1, a non-reserved key represents a function call of an Action or a Workflow
(WL1’s de facto functions and the reason that the language is somewhat procedu-
ral). As seen in example 4.2, a function call in WL2 is represented by explicitly
instantiating a Call object with a string describing what Action or Workflow to
call, a name describing where to store the result and a list of arguments.

__call__ is an overridable Instance Method, that makes objects callable, es-
sentially making them act like functions. Using this, Actions and Workflows can
be made callable, making them return a Call object. What we can do is make
__call__ take any amount of arguments, store them in args, infer the name from
the object that is being called and return a Call based in this data. We still have
to manually set the name field (representing the variable it gets stored in) though.

What we get is a more familiar and less verbose way to call Workflows and func-
tions. It turns out particularly useful, when we start taking advantage of decorators
as well. See example 4.4.

1 class Callable(Model):
2 def __call__(self, **kwargs):
3 return Call(call=self.name, args=kwargs)
4

5 # Example call with empty workflow
6 deploy = Workflow(name='deploy', input=['service', 'cluster'])
7

8 deploy_call = deploy(service='svc1', cluster='cluster1')

Figure 4.4: Callable Workflow class
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4.2.2 Decorators
Proceeding with the idea of treating Workflows and Actions as functions, decorators
are a great way to hide the fact that they (objects with an implemented __call__)
aren’t traditional functions. A decorated function isn’t a traditional function either,
but the general idea is that it should behave relatively close to the original function,
meaning it becomes intuitive (for both the system in regards to tooling and the
user) to call the function with the specified arguments like a normal function would
typically be called. If we define a Workflow or Action by decorating a function, it
will be obvious that it (the Workflow or Action represented by a decorated function)
is callable. Decorators takes the function object as input and can return anything
(usually this would be a wrapped function or a callable object). See example 4.5
for examples of decorated functions.

1 @action()
2 def message(message):
3 action.request.url = 'http://localhost:1337/message?msg={message}' # typing

action.request. will suggest url as a field↪→

4 return {'response': response}
5

6 @workflow()
7 def deploy(service, cluster):
8 call = message(message='deploying now')
9 return [call], None

Figure 4.5: Sample decorated Workflow and Action

Function objects have richer metadata than normal objects, making it possible to
infer data otherwise not available (such as reference name and parameters). Three
of the fields on a Workflow or Action correspond to that of a function (name from
the __name__ field, input from parameter names and output from return values).
We can use a couple of different techniques to gather data from the function body
- by injecting some sort of aggregator, either as a parameter or directly into the
scope, where data can be set or appended, or by collecting it from the return values.
For Workflows, we’ll just return what we need from the body. This isn’t ideal,
but we’ll see a way to do this in a cleaner way in section 4.3. For Actions, we’ll
inject an Action object. The way this is done will be described in section 4.2.2.
After executing the decorated function and having the necessary data at hand,
we can construct a Workflow or Action object and return it with no noticeable
difference to the user (since it is also callable). Modern IDEs or editors will even
suggest the decorated functions parameters (from static analysis) instead of those
of __call__, which is very useful, since they are the actual parameters needed to
call the Workflow or Action. The docstring is also available in the decorator, so if
we use that to annotate params with types or descriptions, we can extract them
from the decorator (which a modern IDE will also do in order to do type hinting).
See example 4.6 for an example of the two decorators.

Exploiting Predictions from Modern Editors

Figure 1.6 shows the structure of an Action. The structure is significantly more
predictable than that of a Workflow. It has a bunch of fields describing what it
needs to do. There is no control flow involved. What we really want is to have the
object available with suggestions on the fields (since it can be hard to remember
exactly what it stores). Modern editors or IDEs will do static analysis and infer the
type of the object from its source. We can either inject the object into the function
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as a parameter or directly into the scope, but neither of these solutions will work,
since the editor or IDE won’t know the source. We can explicitly denote the type
either in the docstring or in a comment, which some editors or IDEs will pick up
on, but this needs to be done for every action in order to get suggestions.

What we can do, however, is inject it directly into the scope under the same name
as something already in scope and even make the object already in scope (which
will be overwritten on runtime) have the fields, that we want to be suggested. We
are already importing the action decorator, which is not used for anything inside
an @action decorated function, and it even has the semantically correct name. In
addition to this, decorators can be implemented as a class and classes can have
fields, making it perfectly suited to act as a proxy for the injected object. See
example 4.6b for a class implementing these tricks.

1 def workflow(description=None):
2 def decorator(f)::
3 parameters = f.__code__.co_varnames[:f.__code__.co_argcount]
4 sequential, output = f(*parameters)
5 w = Workflow(name=f.__name__, description=description,

parameters=parameters, workflow=sequential, output=output)↪→

6 w.validate()
7 return w
8 return decorator

(a) Decorator for Workflow
1 class action(object):
2 """
3 :type request: Request
4 :type condition: Condition
5 """
6 request = None
7 condition = None
8

9 def __init__(self, description=None, extends='base'):
10 self._extends = extends
11 self._description = description
12

13 def __call___(f):
14 parameters = f.__code__.co_varnames[:f.__code__.co_argcount]
15 a = Action(name=f.__name__, extends=self._extends,

description=self._description, parameters=parameters)↪→

16

17 temp_action = f.__globals__.get('action')
18 f.__globals__['action'] = a # inject action
19 a.output = f(*parameters)
20 f.__globals__['action'] = temp_action
21

22 a.validate()
23 return a

(b) Decorator for Action

Figure 4.6: Decorators for Action and Workflow

4.2.3 Context Managers
We also want to represent control flow statements. WL1 provides us with multiple
ways to define control flow, such parallel blocks and asynchronuous loops, sequential
blocks or iterations and conditionals (branching). By just representing these as
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objects, we preserve the verbose nature of our initial DSL. We could use decorators
in the same way as we use them for Actions and Workflows, but that would mess up
our scoping, since function scopes are local and only available inside the function
body. For now that could do (and it did for a short while during development),
since we still use string expressions, but if we manage to replace them (which we
will in section 4.4), decorators wouldn’t work. Using decorators to do many things
could also be confusing compared to only using it on function-like objects. We
do, however, want some of the same functionality decorators provide, especially
something that lets us setup and teardown the scope of the block.

Context managers do just that. They have an __enter__ and an __exit__
function, that gets called when entering and exiting the context. The most well-
known example of a context manager in Python is open. It takes a path and a mode
and returns a file. If used in conjunction with with (e.g. with open(path) as f:),
it automatically closes and cleans up the IO on either a context exit or on exceptions.
This gives a better overview of where the file is accessible. We do, however, not get
the same way of returning data from the context body as we did with decorators
(unless we exploit exceptions, injecting data into the __exit__ function).

By making each class into a context manager and augmenting it in order to add
statements dynamically (since we can’t return them from the context body), we can
create scopes local to the context. The improvement stemming from this is not that
great yet, but the artificial scope will be key in making this language succesful, as
described in the forthcoming chapters. See example 4.7 for an example of a context
manager.

1 class Loop(Statement):
2 # Left out model class implementation
3

4 def __enter__(self):
5 return self
6

7 def __exit__(self, exc_type, exc_val, exc_tb):
8 self.validate()
9

10 def add_statement(self, statement):
11 self.sequential.append(statement)
12

13 @workflow()
14 def deploy(service, clusters):
15 with Loop('cluster', clusters) as loop:
16 loop.add_statement(message(message="'deploying to {}

now'.format(cluster)"))↪→

17 return [loop], None

Figure 4.7: Context manager for Loop

4.3 Stack
So far we have achieved model classes, that provides us with validation and sug-
gestions (through tooling), a better representation of procedural programming and
functions (through an implementation of __call__ and decorators) and better vis-
ibility and control of scoping (through context managers and decorators). We still,
however, have to manually add every step to a list in order to define the program
flow as seen in section 4.2.2 and mentioned as one of the major problems in figure
3.3.
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We can take advantage of the new-found control of scope, since we know when-
ever we enter and exit a level of scope (i.e. for context managers through their
__enter__ and __exit__ and for decorators through manually calling the deco-
rated function). We want to automatically collect everything that happens in a
body and store it in our list. When entering the body, we can make note of a new
level or frame, then during the execution of the body append newly created objects
to the frame, and then when exiting take everything from the note till now and
attach it to the parent object. This is basically a call stack[10]. See figure 4.8 for a
sequence diagram of the stack interaction of an example Workflow.

We will make a globally available stack, that we can add to and pop from. When
entering a new level of scope, the parent structure will announce that it is using the
stack (using a global semaphore) and store the beginning of the frame (the current
size of the stack). When statements (objects of our model classes except Workflows
and Actions, as seen in figure 4.1) are created, they will add themselves to the stack
(if it is being used). When exiting the current level of scope, the parent to the level
will pop the corresponding stack frame from the stack, using the previously stored
stack pointer, and announce that it isn’t using the stack anymore. Now we don’t
need to explicitly tell what the sequential looks like to each object, but it is instead
inferred from the order of execution. See figure 4.9 for a simplified implementation
of the stack.

4.4 Serializable Python
Having the stack, it isn’t necessary to manually define program flow anymore - it
will be created according to the order of the statements, solving problem 2 in figure
3.3. All interaction (except for named assignments, described in section 4.4.3) with
model objects has been hidden from the user, essentially removing the need for
variables (at least as long as string expressions continue to be the only way to
reference output from other Workflows or Actions). As mentioned in 3.1.1, one of
the goals of WL2 is to fix Python integration. Section 3.2.1 mentions 3 goals (ease
of use, seamless integration and testability) that should be accomplished, while still
preserving the power of the string expressions. Looking at approaches to achieving
these goals in WL2, two challenges are posed:

• expressions have to be lazily evaluated (in contrast to eagerly evaluation),
since we don’t have the scope on compile time

• expressions have to be be serializable, since Workflows are transferred around
and executed distributedly

Considering the first challenge (lazy evaluation), the obvious approach is to
pass the expression as a lambda or function. Functions are lazily evaluated and
ascope can easily be injected. They are, however, not innately serializable. There
are workarounds for this (either through the Dill and Pickle packages or through
serialization and reconstruction of a function’s deconstructed code object), but they
are hacky and hard to debug. Code objects aren’t version independent either, so
updating Python could break all existing Workflows. It seems fair to say functions
aren’t feasible.

What we can do instead is to create a class hierachy that captures and collects
information instead of executing it. That way we can reenact what should have
happened from that information, but do it server-side during an execution where
a scope is actually present. Since almost everything in Python can be overridden,
this is possible. obj.__getattr__('attribute') is used to look up an attribute
(field) when doing obj.attribute and obj.__getitem__('item') is used to look
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Figure 4.8: Sequence diagram of Workflow and stack interaction
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1 stack = []
2 semaphore = 0
3

4 class Statement(Model):
5 def __init__(self)
6 if semaphore > 0:
7 stack.append(self)
8

9 class BaseContextManager(object):
10 def __enter__(self):
11 self._offset = len(stack)
12 grab()
13 return self
14

15 def __exit__(self, exc_type, exc_val, exc_tb):
16 release()
17 self.sequential = stack[self._offset:]
18 del stack[self._offset:]
19

20 def workflow(description=None):
21 def decorator(f)::
22 parameters = f.__code__.co_varnames[:f.__code__.co_argcount]
23 offset = len(stack)
24 grab()
25 output = f(*parameters)
26 release()
27 sequential = stack[offset:]
28 del stack[self._offset:]
29 w = Workflow(name=f.__name__, description=description,

parameters=parameters, workflow=sequential, output=output)↪→

30 w.validate()
31 return w
32 return decorator
33

34 @workflow()
35 def deploy(service, clusters):
36 with Loop('cluster', clusters):
37 message(message="'deploying to {} now'.format(cluster)")
38 return None

Figure 4.9: Stack interaction
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up an item when doing obj[item]. Both of these can be overridden in order to
capture the necessary information, i.e. the arguments and the type, and return a
serializable object instead. The most basic case is referencing a variable from scope,
in which situation, we only need to know the name and which case we’re in. An
example of a more advanced case could be a call, where we have to serialize named
and listed parameters. An example of this can be seen in figure 4.10.

1 class Expr(object):
2 def __init__(self, name):
3 self._name = name
4

5 def __getattr__(self, item):
6 return AttributeExpr(self, item)
7

8 def serialized(self):
9 return {EXPR_TYPE: EXPR,

10 'name': self._name}
11

12 class AttributeExpr(Expr):
13 def __init__(self, caller, method):
14 super(AttributeExpr, self).__init__(None)
15 self._caller = caller
16 self._method = method
17

18 def serialized(self):
19 return {
20 EXPR_TYPE: ATTRIBUTE_EXPR,
21 'caller': self._caller.serialized(),
22 'item': self._method
23 }

1 >>> expression = Expr('expression')
2 >>> expression.this.that.serialized()
3 {'__exprtype': 2,
4 'caller': {'__exprtype': 2,
5 'caller': {'__exprtype': 0, 'name': 'expression'},
6 'item': 'this'},
7 'item': 'that'}

Figure 4.10: Capturing class

4.4.1 Uncollectible data
This example only shows how to collect data from __getattr__. Almost
any operation can be overridden (__getitem__, __call__, __eq__ e.g.), ex-
cept for a few reserved words ({and, or, not, in, is}), inline boolean ex-
pressions (expr if cond else expr) and {list, dict, set} comprehensions
([i for i in lst]). For these, we have to create helper functions, since they
will always be eagerly evaluated.

4.4.2 Scope
So what can we do with these lazily evaluated expressions represented by informa-
tion capturing objects? Example 4.10 shows an explicit and manual instantiation
of the Expr class, which can capture and serialize data. Compared to string expres-
sions, we can now write actual Python code, but at the expense of instantiating the
class manually and deserializing the serialized expression. For now, let’s focus on
improving the manual instantiation.

45



There are four main cases we need to look at. Three, where we are introducing
a new variable into the scope of a Workflow, and one, which is in regards to the
builtin variables. The first is the input that a Workflow or Action takes. The second
is the return value of a call (action or Workflow). The third is when we loop over
a list. The fourth is in terms of establishing the initial scope with builtin variables.
If we can make these four cases automatically introduce an Expr object, then there
is no need to manually create it or even expose the class to the user. Luckily, we
have a lot of control in all these areas, since we have made conscious decisions to
control our flow and scope as much as possible (with regard to __call__, context
managers and decorators).

In the first case, we’re looking to inject Expr objects into our decorated func-
tions. As seen in line 3-5 in example 4.6a, we inject strings representing the vari-
able names (since we also need them for our model object). If we instead change
parameters to [Expr(i) for i in parameters], we will be injecting Expr objects
with the right reference into the function without the user knowing or caring.

In the second case, we are already creating a Call object in our overridden
__call__ that will be put on the stack, as seen in example 4.4. As mentioned
earlier in this chapter, we have nothing to return in __call__, but if we keep
returning the Call object and then make it possible to add a referencing name with
.returns(name), we can make returns return an Expr object referencing that
particular name. We will find an even better way to do this in section 4.4.3.

In the third case, we are using context managers as seen in example 4.7.
Before adding the stack, we needed to return the model object, so that we
could add statements to its sequential. Now with the stack, we don’t need to
return anything. In the particular loop cases, this means we can return an
Expr object referencing the loop variable. An iteration would instead look like
with Loop('cluster', clusters) as cluster:.

In the fourth case, we have to do some hacking. We basically want to replace
the global builtins in the entire scope of our Workflows/Actions, but only while
inside their function body (so the rest of the compiler isn’t affected by the distorted
global scope). Decorators make this sort of easy, since we have the function available
and can change its object. Our way of doing this is shown in example 4.11.

This means that we have replaced all the occurences, where we would otherwise
have to manually create an Expr object, with automatic creation instead. When
referencing a variable, we can now easily see what scope it is part of and where
it was introduced. One thing to note is, that this is only possible due to control
flow statements being modelled by context managers instead of decorators, since an
Expr object created inside a decorated function isn’t in scope outside of the function
body. Objects created in a managed context are, however, available in scope.

4.4.3 Named Assignments
As mentioned with both the Loop variable and the variable storing the returned
value from calls, we still have to explicitly declare the variable using respectively
the var parameter in the Loop constructor and .returns(name) when using calls.
This is similar to how it’s done in YAML, where it is declared in a field in the
particular structure. This works well, but it feels strange when the rest of the
language has started to be similar to normal Python. Unfortunately, the only way
to connect a variable name to the object it’s referencing or pointing to is by using
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1 builtin_vars = dict(response_code=Expr('response_code'), # Everything in Expr is
exposed by uOrchestrate↪→

2 execution_id=Expr('execution_id'),
3 body=Expr('body'),
4 uuid4=Expr('uuid4'),
5 str=GlobalsExpr('str'),
6 any=GlobalsExpr('any'),
7 all=GlobalsExpr('all'),
8 set=GlobalsExpr('set')) # A lot of builtins left out in this

example↪→

9

10 def call_func_with_builtin_vars(f, *args, **kwargs):
11 temp_builtins = {}
12 for k, v in builtin_vars.iteritems():
13 temp = f.__globals__.get(k)
14 if temp is not None:
15 temp_builtins[k] = temp
16 f.__globals__[k] = v
17 try:
18 offset = len(stack)
19 grab()
20 res = f(*args, **kwargs)
21 release()
22 seq = stack[offset:]
23 del stack[offset:]
24 finally:
25 for k, v in builtin_vars.iteritems():
26 temp = temp_builtins.get(k)
27 if temp is not None:
28 f.__globals__[k] = temp
29 else:
30 del f.__globals__[k]
31 return res, seq

Figure 4.11: Calling function with temporarily overwritten builtins

code introspection. This is very unreliable since it depends a lot on the formatting
of the source file, so we want to avoid that.

If we instead throw away the readable name and generate a UUID1, then we
can get rid of the explicit variable declaration. This makes it harder to get insight
(e.g. when debugging) since variable names become indistinguishable, but we can
sort of work around that by appending the call name to the UUID. Debugability
are provided through other means as well (such as through the testing framework
described in section 4.7).

New Assignments

Using UUIDs does present a challenge, we need to fix. Since the language has
branching, we can end up in cases, where a variable with the same name stores
different things depending on which branch it went into. Using UUIDs, assigning
something to the same variable will make it reference a new Expr with a new UUID,
essentially overwrite the existing UUID, meaning the variable will always reference
the latest call.

In our Expr class, we have overwritten all non-assigning operations (that is, ev-
erything except augmented arithmetic assignments[26]). We can’t have assignments
in our expressions, so we left them out. We can, however, maybe solve our current
predicament by overriding one of these augmented arithmetic assignments, since

1universally unique identifier
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that lets us modify the object our variable is currently referencing.
We chose the left shift augmented arithmetic assignment operator (<<= or

__ilshift__(self, other), since it was the one that looked the most like an
actual assignment. See figure 4.12 for an example of a bad and a good assignment.

1 @workflow()
2 def create_or_upgrade(service):
3 depl_exists = deployment_exists(service)
4 with If(depl_exists):
5 state = create(service)
6 with Else():
7 state = upgrade(service)
8 return state

(a) Bad assignment - state will always reference upgrade call return value
1 @workflow()
2 def create_or_upgrade(service):
3 depl_exists = deployment_exists(service)
4 with If(depl_exists):
5 state = create(service)
6 with Else():
7 state <<= upgrade(service)
8 return state

(b) Good assignment - state will keep UUID created at ’create’ call and attach it to
’upgrade’ call aswell

Figure 4.12: Good and bad assignment

4.4.4 Deserialization
So far, everything done to improve the language has been done client-side in order
to improve the syntax and compilation process. The two first problems in figure
3.3 only interferred with the client-side compiling of WL2, while the third overlaps
between the client and the uOrchestrate runtime (described in section 1.4.4). Cre-
ating lazily-evaluated serializable expressions happens client-side as well, but they
are executed remotely, meaning some work has to be done there. Once expressions
have been serialized, they are transferable. Where string expressions are easily ex-
ecuted in Python using its internal interpreter, serialized expressions needs to be
deserialized - in practice this would be an execution of the expression. As described
in section 4.4 and example 4.10, we construct call hierarchies by having calls point
to their caller. When serializing a call hierarchy, the outermost layer will be the
last call, which will point to whatever did the call. We cannot do the call before
having resolved the caller, meaning we cannot peel off layer by layer, but instead
have to recurse down the hiearchy until we reach the original caller (the innermost
layer, dictionary or Expr), resulting in an inside-out way of parsing the hiearchy.

The deserialization algorithm recursively parses through the layers, resolving
them when their children have been resolved. It’s loosely based on the Visitor
pattern[15, p. 331], in the sense that the algorithm visits an Expr implementation
based on its type.

It takes a serialized expression (as a dictionary) and a scope (a dictionary as
well) and returns the result of the execution. Simple references are looked up in the
scope and actions are performed on the caller.

Figure 4.13 shows a simplified version of the deserializer.
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1 def handle_simple_expr(expr, scope):
2 return scope[expr['name']]
3

4

5 def handle_action_expr(expr, scope):
6 caller = _parse_expr(expr['caller'], scope)
7 args = [_parse_expr(arg, scope) for arg in expr['args']]
8 kwargs = expr['kwargs']
9 return caller.__call__(*args, **kwargs)

10

11

12 def handle_attribute_expr(expr, scope):
13 caller = _parse_expr(expr['caller'], scope)
14 item = _parse_expr(expr['item'], scope)
15 return caller.__getattribute__(item)
16

17

18 visit_parser = {EXPR: handle_simple_expr,
19 ACTION_EXPR: handle_action_expr,
20 ATTRIBUTE_EXPR: handle_attribute_expr}
21

22

23 def handle_list_type(expr, scope):
24 return [_parse_expr(v, scope) for v in expr]
25

26 def handle_simple_type(expr, _):
27 return expr
28

29 type_visitor = {int: handle_simple_type,
30 list: handle_list_type}
31

32 def _parse_expr(expr, scope):
33 v_type = type(expr)
34 if v_type in type_visitor:
35 return type_visitor[v_type](expr, scope)
36 expr_type = expr[EXPR_TYPE]
37 if expr_type in visit_parser:
38 return visit_parser[expr_type](expr, scope)
39 raise CodeExecutionError('Bad expression %s' % str(expr_type))

Figure 4.13: Simplified version of the serialized expression deserializer

Reconstruct string expressions

A similar algorithm was made to reconstruct the serialized expressions into the
strings that they previously would have been in WL1. The algorithm has the same
flow, but without the scope to look up in. The reproduced string is used for multiple
purposes, primarily to make a serialized expression readable, which is very useful
when debugging. They can also be used to check whether expressions are valid
without having a scope.

4.5 Bundles
With WL1, uOrchestrate would ingest Workflows and Actions as part of bundles
passed to it as described in section 1.4.6. A bundle is a collection of Workflows
with some logical connection and some metadata to describe it. It consists of
YAML files representing the Workflows and Actions and a JSON manifest with the
metadata. Using a client, this will all be compressed into a ZIP archive and sent to
uOrchestrate, which will validate it to the best of its ability. Once uploaded, the
bundle needs to be activated by its version and name, and then the main Workflows
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will be executable. An example of a bundle can be seen in figure 4.14.
In WL2, we need to figure out a way to structure bundles, since uOrchestrate’s

main point of entry is through them. We can try to do it the same way as with WL1.
Have a Python file containing all Workflows in WL2, but separate each Workflow
or Action into its own JSON (serialized) file, preserve the JSON manifest and then
reuse the original point of entry. Doing it this way will introduce the following issue:

We have to figure out a smart way to build our objects, serialize and store them
in each their JSON file before we can upload. This can be done in many ways (e.g.
by adding a save() method, that will write the serialized object to a file), but all
of them add another step to the build process, since a bundle has to be rebuilt
everytime it needs to be uploaded.

If we look away from doing it the exact same way as with WL1, we can try to
get rid of the JSON files and the manifest, but only on the surface (so that we don’t
have to change the entry point). An example can be seen in figure 4.15. A bundle
will be represented mainly by a Python file, which will contain all of the bundles
resources (Workflows and Actions, either directly or imported from another Python
file) and the metadata (which can be stored in a module docstring as some sort of
easily parseable format, e.g. YAML). The archive will then be created dynamically
by extracting the resources and the metadata from the bundle file, so it can be sent
to the entry point. To do this, we only need to augment the client, not uOrchestrate
itself.

4.6 Translator
The language has come to a state, where the majority of the intended functionality
has been achieved. However, a large part of the power in WL2 comes from the
way it interacts with other WL2 bundles and imports. Importing bundles written
in WL1 is possible, but not nearly as nice as doing it in WL2. It might be harder
to get people to adopt WL2 if WL1 stays prevalent. If people aren’t adopting it,
Workflows won’t get translated/migrated (a Catch-22). We could do it manually,
but with over 300 Workflows, manual translation is not an option.

Since we designed the language to be as equal a representation as possible, it
should be fairly easy to translate one-to-one. We wrote a translator to make the
migrations easier. We also wrote a program to compare the old representation to
the new one.

4.7 Testing framework
As mentioned in section 1.4.5, WL1 and uOrchestrate has orchestratorman as test-
ing framework. Workflows and Actions can be tested on a local uOrchestrate in-
stance. orchestratorman also makes it possible to stub and mock Workflows and
Actions. orchestratorman primarily facilitates integration-tests, since the goal and
the test strategy is to upload, activate and run the Workflow in question. It is very
useful and a very important feature, but it is possible to get far into the test process
to discover something unit-tests would have surfaced instantly, meaning we have a
chance to minimize impact of errors here (as described in 1.2d).

WL2 makes it easier to define inline Workflows, since the framework uses pytest,
i.e. tests are written in Python. WL2 also does local compilation and validation,
which makes it possible to extract that part from the original orchestratorman test
strategy instead of having to spin up a uOrchestrate instance (which can take time, if
the bundle in question has a lot of dependencies). In addition, WL2 has introduced
the @expr() decorator, which aims to make it easier to unit-test expressions.
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1 name: health_check
2 action:
3 request:
4 url: http://localhost:19074/

health_check?service={service}↪→

5 method: GET
6 input:
7 - service
8 output:
9 - status: response_code

(a) health_check.yaml Action

name: health_check_service 1

input: 2

- service 3

output: 4

- alive: status == 200 5

workflow: 6

- health_check: 7

name: status 8

args: 9

service: service 10

(b) health_check_service.yaml Workflow
1 {
2 "name": "health_check",
3 "description": "Workflow for checking services health",
4 "maintainers": [
5 "eplatz@uber.com"
6 ],
7 "version": 1,
8 "resources": [
9 {

10 "name": "health_check_service",
11 "type": "main",
12 "file": "health_check_service.yaml"
13 },
14 {
15 "name": "health_check",
16 "type": "lib",
17 "file": "health_check.yaml"
18 }
19

20 ],
21 "imports": []
22 }

(c) health_check bundle manifest

Figure 4.14: Health check bundle in WL1

4.7.1 expr
Functions decorated with @expr() are expressions that can be both serialized and
evaluated locally. If the decorated function is called with the named argument
test_scope, then it will be executed locally, otherwise it will be serialized, so that
it can be executed remotely in uOrchestrate.
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1 """
2 name: health_check
3 description: Workflow for pinging services
4 maintainers: [eplatz@uber.com]
5 version: 1
6 """
7 from workflow_lang.frontend import (
8 action,
9 workflow

10 )
11 from workflow_lang.globals import response_code
12

13 @action():
14 def health_check(service):
15 action.request.url = 'http://localhost:19074/health_check?service={service}
16 action.request.method = 'GET'
17 return {'status': response_code}
18

19 @workflow(main=True)
20 def health_check_service(service):
21 status = health_check(service)
22 return {'alive': status == 200}

Figure 4.15: health_check bundle in WL2

52



Chapter 5

Evaluation

In this section, we will take a look at how the final result has been received. In
order to get an idea of the improvement, three ways of evaluation has been used.
An experiment has been conducted with a variety of participants. A questionnaire
has been sent out to the particular users. The adoption within Uber has also been
looked at.

5.1 Workshop
A small workshop was held with 5 different Uber employees of different skill1 (3
experts, 1 intermediate and 1 beginner). It consisted of a small presentation, a live
demo and then an experiment. The participants had different amounts of experience
with the original Workflow language, ranging from zero experience to experts. The
intermediate user was the only one having tried WL2. The idea of the presentation
and the live demo was to give the participants an introduction to the language
before having them work in it. The experiment they had to do was based on the
example deployment strategy described in section 1.4.7.

5.1.1 Introduction to Language
The participants were given a small presentation outlining the core concepts and
ideas behind the language and a few examples illustrating them. The presentation
lasted approximately 10 minutes. The demo lasted 10 minutes and consisted of a
writing a simple Action (doing a POST request to localhost) and a simple Workflow
(calling the Action), uploading the bundle and starting the Workflow. The code
can be seen in example 5.1.

5.1.2 Setup
The participants were asked to clone a git repository containing scaffolding, stubs
(see figure 5.2 for a stubbed bundle with a build Workflow, that will send a message
to a chat room) and setup instructions for the experiment. The instructions can be
seen in figure 5.3. The participants were shown the same diagram as in figure 1.7.
An introduction to what the diagram meant was given and then the participants had
to recreate Workflows to represent the Workflow in the diagram. See figure 5.4 for
a sample solution. Some leeway were given in regards to the participants solution,
in since it could be solved in many ways (e.g. without conditionals or splitting it

1experts having written >10 Workflows, intermediates having written 3-9 Workflows and be-
ginners having written 1-2 Workflows
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1 """
2 name: hello_world
3 version: 1
4 maintainers: [eplatz@uber.com]
5 """
6 from workflow_lang.frontend import (
7 action,
8 base,
9 workflow

10 )
11 from workflow_lang.globals import *
12

13

14 @action(base)
15 def call(obj):
16 action.request.url = 'http://localhost:19074'
17 action.request.body = {'payload': obj['value']}
18 action.request.method = 'POST'
19 return {'message': response}
20

21

22 @workflow(main=True)
23 def do_call():
24 call({'value': 'Hello World'})

Figure 5.1: Live demo bundle

Participant Experience Time Errors Documentation
Level Lookups

1 Expert 13m 45s 0 0
2 Expert 14m 30s 0 3
3 Expert 15m 00s 1 1
4 Intermediate 10m 30s 0 0
5 Beginner 17m 00s 3 5

Baseline Expert 33m 15s 3 5

Table 5.1: Experiment results

up into 4 Workflows). The same experiment was performed on an expert Workflow
writer to get a baseline to compare to. Instead of the presentation on WL2, he
was given 5 minutes to read the documentation (which can be seen in appendix B),
brush up on keywords etc.

5.1.3 Results
The results can be seen in table 5.1. They were in clear favor of WL2. People
wrote the Workflows much faster with fewer errors (an error being a failed upload),
even though only one of them had previous experience with WL2. The results
indicate that WL2 is twice as fast to write in compared to WL1, even when having
no prior experience with Workflows or the language. The amount of errors were
fewer in WL2 and the documentation (which can be seen in appendix C) wasn’t as
necessary due to IDE suggestions and familiar syntax.
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1 """
2 name: mubuild
3 version: 1
4 maintainers: [eplatz@uber.com]
5 imports:
6 - bundle: chat
7 """
8 from workflow_lang.frontend import (
9 LegacyCall,

10 Format,
11 workflow
12 )
13 from workflow_lang.globals import (
14 utcnow,
15 uuid4,
16 workflow_user
17 )
18

19

20 @workflow()
21 def build(service, gitref):
22 LegacyCall('chat.message', room='workflow-language-v2-workshop',

message=Format('{wfuser} tried to build {svc} from {gitref} at time
{utc}', gitref=gitref, svc=service, wfuser=workflow_user, utc=utcnow()),
color='green')

↪→

↪→

↪→

23 return {'build-ref': str(uuid4())}

Figure 5.2: Stubbed ubuild bundle example

1 1. git clone {repository}
2 2. git checkout -b {name}_incremental_deployment
3 3. make bootstrap
4 4. source env/bin/activate
5 5. uorchestrate-cli bundles initialize-bundle
6 6. {name}_incremental_deployment
7 7. Open {name}_incremental_deployment.py in your favorite Python IDE/editor
8 8. Fill out remaining bundle metadata (version, maintainers)
9 9. import mudeploy

10 10. import mubuild
11

12 11. Write Workflows
13

14 12. uorchestrate-cli bundles create-n-upload --python
{name}_incremental_deployment.py↪→

15 13. uorchestrate-cli bundles activate {name}_incremental_deployment {version}
16 14. uorchestrate-cli workflows start -p arg1=val -p arg2=val

{name}_incremental_deployment.incremental_deployment↪→

Figure 5.3: Setup instructions for experiment
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1 """
2 name: incremental_deployment
3 version: 1
4 maintainers: [eplatz@uber.com]
5 """
6 from workflow_lang.frontend import (
7 If,
8 Loop,
9 LoopAsync,

10 workflow
11 )
12

13 import mubuild
14 import mudeploy
15

16

17 @workflow()
18 def upgrade_deployment(service, deployment, build_ref, cluster):
19 transfer_res = mudeploy.transfer(service, deployment, cluster, build_ref)
20 with If(transfer_res['success']):
21 upgrade_res = mudeploy.upgrade(service, deployment, cluster, build_ref)
22 with If(upgrade_res['success']):
23 mudeploy.monitor(service, deployment, cluster)
24

25

26 @workflow()
27 def rollout_cluster(service, cluster, build_ref):
28 with Loop(['prod1', 'prod2', 'prod3', 'prod4']) as deployment:
29 upgrade_deployment(service, deployment, build_ref, cluster)
30

31

32 @workflow()
33 def rollout(service, build_ref):
34 with Loop([['DC1', 'DC2'], ['DC3', 'DC4']]) as parallel_clusters:
35 with LoopAsync(parallel_clusters) as cluster:
36 rollout_cluster(service, cluster, build_ref)
37

38

39 @workflow(main=True)
40 def incremental_deployment(service, gitref):
41 build_res = mubuild.build(service, gitref)
42 rollout(service, build_res['build-ref'])

Figure 5.4: Sample solution for experiment
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5.2 Questionnaire
In order to get an idea of how users felt when writing in WL2, a questionnaire was
sent out to existing users and experiment participants. Questions were designed
around the hypothesis (section 1.5).

5.2.1 Setup
The questionnaire consists of a section for users with experience with WL1 (11
questions) and a section for users with no previous experience (5 questions) and
then 2 questions for both user groups. All answers are given a rating from 1 to 5,
1 being the worst and 5 being the best. 7 people answered the questionnaire.

5.2.2 Results
The results can be divided into two sections: One focusing on users with previous
Workflow experience and one focusing on users without. In regards to questions,
they can be divided into 5 areas: Tooling, Syntax, Python Integration, Language
Comfortability, Efficiency and Ease of Learning.

Users with previous Workflow experience

5 out of the 7 questionnaire participants had previous experience with writing Work-
flows.

In regards to Tooling, WL1 scored an average of 1,8/5. WL2 scored an average
of 3,25/5.

In regards to Syntax, WL1 scored an average of 2,4/5. WL2 scored an average
of 3,75/5.

In regards to Python Integration, WL1 scored an average of 1,6/5. WL2
scored an average of 3,75/5.

In regards to Language Comfortability, WL1 scored an average of 3,4/5.
WL2 scored an average of 3,5/5.

In regards to Efficiency, WL1 scored an average of 2/5. WL2 scored an average
of 3,5/5.

In regards to Ease of Learning, WL2 scored an average of 3,25/5.
WL2 scored higher than WL1 in all areas. How much higher depended on what

area. Python Integration, for instance, scored over twice as high in WL2 as the old.
Language Comfortability, on the other hand, was very close, which makes sense,
since the answers came from users that were experienced in WL1 and not WL2.
The same could be said for Efficiency, but WL2 still scored significantly higher in
that area.

Users without previous Workflow experience

2 out of the 7 questionnaire participants didn’t have any experience with writing
Workflows.

In regards to Tooling, WL2 scored an average of 4/5.
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In regards to Syntax, WL2 scored an average of 4,5/5.

In regards to Python Integration, WL2 scored an average of 4/5.

In regards to Language Comfortability, WL2 scored an average of 3/5.

In regards to Efficiency, WL2 scored an average of 4/5.

In regards to Ease of Learning, WL2 scored an average of 3,5/5.
Without having WL1 as a frame of reference, WL2 scores higher. Comfortability

is still fairly low, which makes sense, since the language is completely new to the
participants.

5.3 Adoption
Three projects have adopted WL2 so far and there are efforts to migrate existing
Workflows in queue. The language was released close to the end of the year, which
means that people are looking to finish their current projects before deadlines and
performance evaluation. Due to this, people haven’t been looking very much out-
ward, but instead inward. Not that many Workflows have been written in general,
but the majority have been written in WL2.

5.3.1 Unsolicited Feedback
Early adopters of WL2 have in general had a small need to reach out for help in
regards to functionality, syntax etc. The fact that users have been able to create
>300 LOC bundles independently indicates that the language is fairly intuitive to
use. In the few occasions where users have reached out, they have given compliments
about the general use of the language, e.g. how it has improved writing Workflows
greatly in terms of efficiency.

5.4 Compared to hypothesis
Looking back at our hypothesis in section 1.5, we can take a look at each QAS in
table 1.2 and compare it to our results.

In regards to ’Learn to use system’ (1.2a), we can see from our questionnaire
results, that experienced users prefer tooling, syntax and Python integration in WL2
twice as much as in WL1. New users also felt very good about those three (scoring
4/5, 4,5/5 and 4/5 respectively), even though they had no frame of reference. Both
groups of users thought the language was fairly easy to learn as well. Unfortunately,
it wasn’t possible to get data on how hard it was to learn WL1, but it has generally
been an issue during informal discussions on the language. From the experiment, we
can see that users in general looked in the documentation very few times, indicating
that using the language felt intuitive to them.

In regards to ’Use system efficiently’ (1.2b), we can see that the task time
was indeed down by approximately 50% in all cases, compared to the baseline.
Number of errors varied between users of different experience, but in general, the
number of errors were down by atleast 50%. Looking at the questionnaire, both
experienced and new users felt very efficient in WL2.
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In regards to ’Feel comfortable’ (1.2c), both experienced and new users ex-
pressed neutrality on comfortability of WL2. This makes sense, since it usually
takes time to get comfortable with a new language. It could have been interesting
to compare this to language comfortability with new users of WL1. This would be
a better indicator of whether or not the language is an improvement.

In regards to ’Minimize impact of errors’ (1.2d), no particular experiments
have been made. This basically depends on good practice, but WL2 does provide
a bunch of tools to minimize time lost due to error. This comes primarily from the
fact, that a uOrchestrate instance isn’t needed to validate the bundle or Workflow.

Conclusion

Looking at the hypothesis and evaluating whether it holds, we see that WL2 does
indeed improve on a lot of the circumstances surrounding WL1. Considering how
early in WL2’s lifecycle this is and that almost all of the evaluation was based
on inexperienced users, this is very promising. Once it gets a larger userbase, the
benefits will accrue, since one of the greater improvements is the interaction between
Workflows and bundles, i.e. we need existing Workflows and bundles in WL2 to
take advantage of this improvement.
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Chapter 6

Conclusion

In this thesis, we have attempted to redesign uOrchestrate’s Workflow Language
(WL1) with the aim of fixing usability issues relating to design choices made early
in its development.

In order for us to really understand WL1, we took a step back to look at Uber’s
technological architecture and infrastructure and then continuously zoomed in on
particular challenges until WL1 became needed, making the context and influences
of its development clear. The context is described using Uber’s microservice archi-
tecture and its internal deployment system, uDeploy, as the primary example of a
WL1 consumer.

The philosophy and implementation of WL1, along with its context, was anal-
ysed using theory on DSLs and Software Architecture resulting in identification of
three main issues: Syntax, Toolchain and Python integration - all relating to WL1’s
syntax, a subset of YAML.

A solution to these issues was proposed through a redesign of WL1’s syntax
based on the findings of the analysis. The redesign replaces YAML as the syntax
with an internal DSL written in Python, solving all three main issues by respectively
improving the syntax, providing the user with access to Python’s toolchain and
having the syntax be Python, making it possible to do actual integration.

A new frontend of the language (the Python DSL) has been implemented based
on the redesign (WL2). WL2 uses Model classes to represent the old YAML struc-
tures. It takes advantage of specific Python features, such as language constructs
and object callability, in order to support System Initiative by using IDEs and static
analysis. An actual scope, implemented using context managers, makes the syntax
easier to keep track of and it also makes it possible to use a stack in order to get rid
of explicit and manual ordering of statements. It integrates with Python expres-
sions through a functionality-collecting, serializable class, that overrides as much
primitive functionality as possible, meaning Python expressions can now be lazily
evaluated or deserialized server-side. WL2 is completely compatible with WL1. It
is also capable of replacing WL1 in the long run.

In order to evaluate WL2, we have made two user studies: A workshop with a
small experiment and a questionnaire. We have held these up against our hypoth-
esis, which have shown WL2 to solve many of the issues we set out to fix. The
results show improvements on 3 out of the 4 main statements in the hypothesis.

6.1 Future Work
There are still potential improvements to be done in regards to WL2.
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The stack (described in section 4.3) is still very primitive and only used early
in the compilation pipeline in order to keep track of program flow. In order to get
better debuggability, the stack could be augmented to collect more data in order
to provide it to the runtime. This could open up for the possibility of having line
numbers or a stacktrace.

Serializable Python (described in section 4.4) still isn’t used seamlessly,
when looking at list and dictionary comprehensions, inline boolean expressions and
reserved words such as and or or.
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Appendix A

Using WL2

In order to try out WL2, the code (excluding tests) has been extracted from
uOrchestrate and uploaded to a public repository. Only code directly related to
the new language has been extracted (into the directory workflow_lang), which
represents the first part of the compile pipeline, Lexing & Parsing (described in
section 1.4.2). This is enough code to write in WL2 and try out some of the
improvements, but not enough to actually run workflows (which would also
require a uOrchestrate instance). Code to run serialized expressions (described in
section 4.4) and translate WL1 workflows (described in section 4.6) has also been
extracted (into respectively the workflow_runtime and translator directories).
The repository contains a README.md with instructions on how to setup the
environment and use the language, along with a few demos:

• sample bundles similar to the ones described in section 1.4.7 and section
5.1.2

• a Python script running a few serialized expressions

The repository can be found at:
https://bitbucket.org/elloarmy/workflow_lang_v2
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Appendix B

WL1 Documentation

The following is the internal documentation of WL1. It has been redacted in order
to remove internal and unnecessary details.
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THE ORCHESTRATOR WORKFLOW
LANGUAGE

Orchestrator workflows consist of actions that are bound together by control structures. Workflows are
simple programs that string together calls to actions in a way that is similar to a classical, imperative
programming language. Workflows are, however, executed in a fault tolerant manner so that each
action will be retried until it succeeds. An execution of a workflow can be distributed over several
orchestrator instances and execution is fault tolerant in that execution continues even if one or more of
the participating orchestrator instances terminate.

A SIMPLE HELLO WORLD EXAMPLE

The following is a simple example workflow, which will pause immediately after it has been started. It
will announced this in the given chat channel and wait to be resumed.

input: 

    - room 

workflow: 

  - confirm_to_continue: 

      args: 

          room: room 

STATE

Each workflow execution has a state. Actions write output to this state and commands can read from it.
The state is a python dictionary that can be accessed when writing Python expressions.

Command output

Commands such as actions may define output. This output is accessible in the state if the command
has been named in the workflow. A name key is used to name a command. In the example above, we
could name the confirm_to_continue command output confirm by setting a name:

input: 

    - room 



workflow: 

  - confirm_to_continue: 

      name: confirm 

      args: 

          room: room 

Actions declare their output using an output map as shown in the next section.

ACTIONS

Actions are the basic building block of the workflow language. Each action defines a type of interaction
with a REST endpoint. Actions should be idempotent in that they may be executed more than once to
retry on failures (which could be network failures).

The super type of all actions is base:

# 

# Base action 

# 

# This is the arc type action - sub-types may only "overwrite" fields spef

# everything else will be ignored 

# 

name: base          # name used in error reporting 

extends: 

action: 

    condition: 

        pre:            # python assertion 

        post:           # python assertion 

        post_feedback:  # optional expression that gives a human readable 

    request: 

        url:            # url 

        parameters:     # a python map expression or a list of mappings to

        method:         # GET, PUT, POST, DELETE, HEAD 

        body:           # a python map expression or a list of mappings to

        headers:        # a python map expression or a list of mappings to

        returns:        # expected HTTP response code 

        retry: 

            wait:         # ms to wait before a retry 

            max-retries:  # positive integer, number of retries before rep

    output: 

    input: 



Concrete actions can override any of the properties of base. The input clause is a list of parameter
names that are expected and the output clause defines a map of output from the action. The wait
time can be set to any positive integer, but there is a natural latency in the orchestrator between runs of
XXms.

As an example, the following action definition describes the REST call needed to start a build in
uDeploy:

In the example, the request url is set to http://localhost:{port_num}/api/service/build
and the request method is POST. The body is a JSON map containing three values which are just
simple lookups of input values. The action expects the return code to be 200. If it is for example 503,
the request will be retried after a while (but at least 50ms). The post entry can furthermore contain a
Python expression that checks whether a request has succeeded. If this expression is false, the request
will also be retried.

When calling the actions, the caller must set the values for service_id, gitref, and description.
A call could look like this:

name:               build-start 

extends:            base 

action: 

  request: 

    url:            http://localhost:{port_num}/api/service/build 

    method:         POST 

    body: 

      - svc_id:     service_id 

      - git_ref:    gitref 

      - description: description 

    returns:        200 

    retry: 

      wait:         50 

      max-retries:  4 

  input: 

    - name: service_id 

      type: service_id 

    - name: gitref 

      type: gitref 

    - name: description 

  output: 

    - build_revision: response.items()[0][1].items()[0][1]['result']['rev_



input: 

    - service 

workflow: 

  - build-start: 

      args: 

          service_id: service 

          gitref: "'origin/master'" 

          description: "'Build something'" 

This would build origin/master for some service. Notice that since the values are Python expressions,
we need to enclose strings in quotes. Other workflows can be called in the same way that actions are
called.

SUPPORTED CONTROL STRUCTURES

The workflow language supports a simple conditionals, iteration as well as implicit fork-join. These
control structures can be combined with each other as well as with actions to create workflows.

do if

The do if construct executes an action if the given condition is satisfied. The condition is a Python
expression:

do: 

  if: expr 

  sequential: 

    - Workflow command 

    ... 

The sequence is only executed if the expression has the value true.

parallel

The parallel construct executes a list of commands in parallel, waiting for the last one to finish
before moving on to the next command after parallel:

parallel: 

  - Workflow command 

  - Workflow command 



iterate

The iterate construct iterates through a list, executing a list of commands for each member of this
list:

iterate: 

      for: var 

      in: list 

      sequential: 

            - Workflow command 

            - Workflow command 

Run concurrently

The iterate construct has a variant which allows authors to iterate over a list but run the associated
block concurrently.

run_concurrently: 

      for: var 

      in: list 

      sequential: 

            - Workflow command 

            - Workflow command 

The control-flow automatically forks and joins without additional work required. Note that all of the
parallel executions must successfully reach the end of the block before execution can proceed.

run_concurrently: 

      for: var 

      in: list 

      output: 

          - <variabel>: <expr> 

      sequential: 

            - Workflow command 

            - Workflow command 

When processing items in parallel it is often useful to be able to collect output. To do that you can
specify an output section to the header of the iteration. By defining this, the list of provided variables
will be available in scope after successful completion of the block. Each variable will map to a
dictionary with the value of the expression indexed under the list item.



Appendix C

WL2 Documentation

The following is the internal documentation of WL2. It has been redacted in order
to remove internal and unnecessary details.
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THE ORCHESTRATOR WORKFLOW
LANGUAGE V2

The Orchestrator workflow language v2 is a new approach to defining workflows in Python by using
decorators, context managers, classes and functions. It is fully interoperable with the existing workflow
language and in general it is structured the same way too, so any existing know-how should be
transferable. In any case, this documentation will cover the exact same material as “The Orchestrator
workflow language” and “Workflow bundles”, but with the new language.

INTRODUCTION

In the new language Python modules acts a bundles. This means that if you import a bundle, it is going
to be actively available (instead of just being a namespaced reference) in the compilation process and
that any IDE support or tooling (such as auto-completion or suggestions) works in regards to its
members. The only important distinction is that if you import another module, it is the same as
importing the bundle, but if you import specific members of a module, it won’t count as importing the
bundle. In that case, those members will be added as resources to the bundle that’s importing them.
Using this you can split up bundles into multiple files to keep an overview. The bundle metadata will
primarily be extracted from the module docstring, which is formatted as YAML and has the same
attributes as the current JSON manifest, except resources and as mentioned imports. Resources are
extracted from the members of the module, more specifically ActionDefinitions and
WorkflowDefinitions.

Actions and Workflows are defined by decorating a function with respectively the action and the
workflow decorator. A decorated function is callable, using either named or ordered parameters,
meaning you just call the workflow or action inside other workflows as you would call a normal Python
function. An IDE will even suggest the parameters and their types (if written in the functions docstring)
and the compiler will validate the call. Actions can inherit from other actions which means that anything
you don’t override will keep the parents attribute, including parameters.

Inside workflows, you can call existing workflows and actions, but you can also use different context
managers as control structures:

Sequential

Parallel

Loop

LoopAsync



If and Else (Else can only be used in succession of an If)

When using Python expressions (a feature in the old Workflow language), you no longer have to pass
them as strings. Most Python integrates completely with the new Workflow language, except for
different types of comprehensions (list, dict etc.), boolean expressions, a few operations (and, or, in, is,
not and combinations of them) and builtin string functions (format and join etc.). For these, utility
functions are exposed (Join, Format, List etc.).

While reading the following documentation, you should keep a few wins of the new language in mind,
since it especially simplifies the particular flow around those features. The wins are:

Better modularity through imports

IDE support

Python integration

Feels closer to programming than before

Orchestrator workflows consist of actions that are bound together by control structures. Workflows are
simple programs that string together calls to actions in a way that is similar to a classical, imperative
programming language. Workflows are, however, executed in a fault tolerant manner so that each
action will be retried until it succeeds. An execution of a workflow can be distributed over several
orchestrator instances and execution is fault tolerant in that execution continues even if one or more of
the participating orchestrator instances terminate.

Disclaimer

Disclaimer: This language isn’t Python. This is a DSL, meaning the rules have been bent to make them
fit into uOrchestrate’s universe. An example of this is ad hoc object creation: If you want to use a
dictionary, you have to make sure that it’s in scope. It won’t be if you just define it and reference it,
however, if you return it as output or pass it into uOrchestrate as input, it will be.

A SIMPLE HELLO WORLD EXAMPLE

The following is a simple example workflow, which will pause immediately after it has been started. It
will announced this in the given chat channel and wait to be resumed.

@workflow() 

def hello_world(room): 

    confirm_to_continue(chat_room=room) 

STATE



Each workflow execution has a state. Actions write output to this state and commands can read from it.
The state is a python dictionary that can be accessed when writing Python expressions.

Python Expressions

Python expressions are no longer passed as a string, but instead integrated into the current language
more seamlessly. Expressions can be defined in two ways. Either by constructing them directly where
you need them or by extracting them into a function annotated by the @expr decorator. This way you
can reuse the code and even unit test them by importing them into your tests. The last approach is
preferable because it encourages good engineering practices, such as code reutilization. You can then
import the expression into multiple modules and even unit test it.

The following shows how to construct a serializable Python expression, that takes two numbers and
returns the range from 0 to their sum.

Command output

Commands such as actions may define output. This output is accessible in the state if the command
has been named in the workflow. In the example above, we could assign the confirm_to_continue
command output to confirm:

@workflow() 

def hello_world(room): 

    confirm = confirm_to_continue(chat_room=room) 

Actions declare their output using an output map as shown in the next section.

ACTIONS

Actions are the basic building block of the workflow language. Each action defines a type of interaction
with a REST endpoint. Actions should be idempotent in that they may be executed more than once to
retry on failures (which could be network failures).

The super type of all actions is base:

@expr() 

def expression(variable1, variable2): 

    return range(int(variable1) + int(variable2)) 

expression(4, 5)  # results in lazily evaluated serializable Python expres

expression(4, 5, test_scope={})  # eagerly evaluates the expression, inten



Concrete actions can override any of the properties of base. Input parameters are set in the function
signature and the return value defines a map of output from the action. The wait time can be set to any
positive integer, but there is a natural latency in the orchestrator between runs of XXms.

As an example, the following action definition describes the REST call needed to start a build in
uDeploy:

@action() 

def base():  # Set parameters 

    """ 

    Base action 

    This is the arc type action - sub-types may only "overwrite" fields sp

    everything else will be ignored 

    """   # Set parameter types and descriptions 

    action.condition.pre = None              # python assertion 

    action.condition.post = None             # python assertion 

    action.condition.post_feedback = None    # optional expression that gi

    action.request.url = None                # url 

    action.request.parameters = None         # a python map expression or 

    action.request.method = None             # GET, PUT, POST, DELETE, HEA

    action.request.body = None               # a python map expression or 

    action.request.headers = None            # a python map expression or 

    action.request.returns = None            # expected HTTP response code

    action.request.retry.wait = None         # ms to wait before a retry 

    action.request.retry.max_retries = None  # positive integer, number of

    return None  # Set output map 

@action(base) 

def build_start(service_id, gitref, description): 

    """ 

    :type service_id: service_id 

    :type gitref: gitref 

    """ 

    action.request.url = 'http://localhost:{port_num}/api/service/build' 

    action.request.method = 'POST' 

    action.request.body = {'svc_id': service_id, 

                           'git_ref': gitref, 

                           'description': description} 

    action.request.returns = 200 

    action.request.retry.wait = 50 

    action.request.retry.max_retries = 4 

    return {'build_revision': action.response.items()[0][1].items()[0][1][



In the example, the request url is set to http://localhost:{port_num}/api/service/build
and the request method is POST. The body is a JSON map containing three values which are just
simple lookups of input values. The action expects the return code to be 200. If it is for example 503,
the request will be retried after a while (but at least 50ms). The post entry can furthermore contain a
Python expression that checks whether a request has succeeded. If this expression is false, the request
will also be retried.

When calling the actions, the caller must set the values for service_id, gitref, and description.
A call could look like this:

This would build origin/master for some service. Other workflows can be called in the same way that
actions are called.

SUPPORTED CONTROL STRUCTURES

The workflow language supports simple conditionals, iteration as well as implicit fork-join. These
control structures can be combined with each other as well as with actions to create workflows.

do if

The If context manager executes an action if the given condition is satisfied. The condition is a Python
expression:

with If(expr): 

    # Workflow command 

The sequence is only executed if the expression has the value true.

parallel

The Parallel context manager executes a list of commands in parallel, waiting for the last one to
finish before moving on to the next command after parallel:

with Parallel(): 

  # Workflow command 

  # Workflow command 

@workflow() 

def workflow_name(service): 

    build_start(service_id=service, gitref='origin/master', description='B



iterate

The Loop context manager iterates through a list, executing a list of commands for each member of
this list:

with Loop(list) as var: 

    # Workflow command 

    # Workflow command 

Run concurrently

The LoopAsync context manager has a variant which allows authors to iterate over a list but run the
associated block concurrently.

with LoopAsync(list) as var: 

    # Workflow command 

    # Workflow command 

The control-flow automatically forks and joins without additional work required. Note that all of the
parallel executions must successfully reach the end of the block before execution can proceed.

with LoopAsync(list) as var: 

    # Workflow command 

    # Workflow command 

    var = LoopAsync.outputs(expr) 

When processing items in parallel it is often useful to be able to collect output. To do that you can
specify outputs by using LoopAsync.outputs. By defining this, the list of provided variables will be
available in scope after successful completion of the block. Each variable will map to a dictionary with
the value of the expression indexed under the list item.

PHASES

Phases are created using the utility functions phase_{start, complete, fail, cancel, rollback, pause,
update}. All these functions take a key representing the phase name and the context as mandatory
inputs. Additionally, it is possible provide notification and display_data as optional input. The utility
functions return a Phase object, that you can then add signals to.



WORKFLOW BUNDLES

As of 2017 workflows are to be managed via bundles. Bundles allows simple packaging of workflows
which belong together, as well as service (or domain) specific actions which are used by these.

A bundle contains any number of resources (workflows and actions) and metadata which declares the
content and the dependencies required by the included resources.

THE BUNDLE MANIFEST

In Workflow language v2, the whole bundle is contained in a Python module (or multiple, if resources
are split out). The Python module describes the content of the bundle, as well as some required
metadata, such as the version of the bundle.

The bundle lets you declare which of the embedded workflows are intended for execution and which
are intended as “library” workflows. It also let’s you specify the version of the imported bundles i.e. the
bundles required by your workflows. By explicitly providing the version of the bundle you require, you
ensure that the workflows you call from your workflows do not change underneath you (similarly to
what you would do with any other software to freeze you dependencies)

The format is simple. It’s a basic module docstring (YAML dict) with the following fields:

name (alpha numeric with underscore)

description (utf8 string)

maintainers (list of strings)

version (can be number, but will be stored as a string)

Resources and imports are automatically added when defined or imported, i.e. it is no more required to
define resources and imports in the bundle metadata as you had to in the past. A resource is either an
ActionDefinition or a WorkflowDefinition made by decorating a function with the respective decorator.
Actions will always be libs, and workflows are libs by default unless you specify it to be main in the
decorator. The resource name is the function name, which is used by you when you need to run the
workflow or when you want to refer to the workflow from another workflow (see more below)

The type admits main and lib values, used by uOrchestrate to restrict the number of workflows exposed
in the “workflow list” which are the workflows can can be run (see API or CLI). Workflows designated as

phase = phase_start('build', [service], 

                    display_data={'service': service, 

                                  'build-revision': upgrade_config.get('ne

phase.add_signal('status', status(service, build_start['build_revision']))



main may also be used as libs, but only mains are compiled on upload, and checked for syntax and
linking problems. If all libs are used by a main you can be confident that they are syntactically correct, if
not, you will have to test it by using the orchestratorman test framework.

The bundle docstring is a simple YAML document:

""" 

name: some_name 

description: this is what my bundle can do for you 

maintainers: [ 

"somebody@uber.com" 

] 

version: 0 

""" 

from udeploy_orchestrator.lib.workflow_lang.builder.frontend import ( 

action, 

workflow 

) 

from udeploy_workflows import chat 

@action() 

def some_action(): 

    action.request.url = '{some_host}:{some_port}/{some_endpoint}' 

@workflow() 

def some_workflow() 

    color = some_action() 

    chat.message('some_room', 'some message', color) 

REFERRING TO RESOURCES AND IMPORTS

In order to refer to workflows in your bundles or imports, we’ve adopted a simple namespacing
scheme. Resources in your own bundle may be referenced (called) by simply using their name while
imports are referenced by bundle and name using ‘.’ as a namespace separator. E.g.
udeploy.upgrade_deployment where udeploy is an import in your bundle (e.g. import
udeploy_workflows.udeploy as udeploy), and upgrade_deployment is a resource in the corresponding
bundle. The version of the bundle you import is frozen to the one you’re referencing at upload time.

IMPORTING AND USING YAML BUNDLES

If you want to import and use a bundle that hasn’t been ported to the new language, you can add it to
an imports list in the module docstring as a dictionary containing bundle and version (optional, defaults
to newest). When wanting to call a resource, you have to use the LegacyCall class, which takes a name



(which has to be a string with the same format of how a call would normally be, e.g.
‘udeploy.upgrade_deployment’) and arguments as keyword arguments, e.g. varname =
LegacyCall(‘udeploy.upgrade_deployment’, arg1=arg1, arg2=arg2):

USING OTHER BUNDLES VIA IMPORTS

In order to know which lib (or main) workflows in a given manifest you did not author, you will need to
download the bundle or read documentation provided by the maintainers.

MANAGING BUNDLES

The lifecycle of a bundle is fairly straight forward.

write

upload

activate

run

rollback (if needed)

Authoring a bundle is reduced to writing and testing your workflow. You might want to initiate the
bundle in your current directory which you can do with the following command:

""" 

name: some_name 

description: this is what my bundle can do for you 

maintainers: [ 

"somebody@uber.com" 

] 

version: 0 

imports: 

  - bundle: chat 

""" 

from udeploy_orchestrator.lib.workflow_lang.builder.frontend import ( 

LegacyCall, 

action, 

workflow 

) 

@workflow() 

def some_workflow() 

    LegacyCall('chat.message', room='some_room', message='some message', c



uorchestrate-cli bundles initialize-bundle 

Upload can be as simple as running

uorchestrate-cli bundles create-n-upload --python /some/path/to/bundle 

If you are using orchestratorman to test your workflow (as you should) the uorchestrate-cli will already
be in your virtual environment. You may want to use the different options to point to the tool to an
appropriate environment e.g. staging, dca, or sjc (it’s easy to clone and run uOrchestrate locally too).

Activating is a release mechanism, it means to change to default version of your bundle. The default is
used to determine which version is run by your users by default (your users can always choose to run
your workflows by explicitly specifying the bundle version and not relying on the default version). The
default is also used by uOrchestrate when others import your bundle in theirs without specifying the
version. Activation is done using the command:

uorchestrate-cli bundles activate bundle_name version_to_activate 

Finally, activation means that an uploaded bundle does not take effect before you decide it should. You
can upload and test (in production) and then activate it once you are happy with the result. This allows
you to change you mind and rollback the default version to the previous version if you discover an
issue at a later stage. uOrchestrate will keep track of the activation history and all you need to do is call
the rollback endpoint or use the uorchestrate-cli to rollback.


	Abstract
	Acknowledgements
	Introduction
	Growing a Technological Infrastructure
	Web Services

	Reliable Microservice Deployment
	uDeploy

	Web Service Orchestration
	uOrchestrate

	Workflow Language
	Philosophy
	Workflow Language Compiler
	Syntax and Semantics
	Runtime
	Tooling
	Namespaces and Bundles
	Example: Incremental Deployment
	Conclusion

	Hypothesis
	Method

	Related work
	Amazon
	Simple Workflow Service

	Netflix
	Spinnaker


	Workflow Language: from v1.0 to v2.0
	Workflow Language v1.0
	Issues with Workflow Language v1.0

	Workflow Language v2.0
	Fundamental Changes
	Internal vs External DSL
	Language Choice
	Prototype Study
	Conclusion


	Implementation
	Model Classes
	Schematics

	Language Constructs in Python
	Callable Objects
	Decorators
	Context Managers

	Stack
	Serializable Python
	Uncollectible data
	Scope
	Named Assignments
	Deserialization

	Bundles
	Translator
	Testing framework
	expr


	Evaluation
	Workshop
	Introduction to Language
	Setup
	Results

	Questionnaire
	Setup
	Results

	Adoption
	Unsolicited Feedback

	Compared to hypothesis

	Conclusion
	Future Work

	Appendices
	Using WL2
	WL1 Documentation
	WL2 Documentation

